

Search for the 125 GeV Higgs Boson produced in association with top quarks

Djamel BOUMEDIENE – LPC On behalf of the ATLAS collaboration

April 12, 2016

- Evidence of the Higgs coupling to fermions is a milestone in Higgs studies
- Top Yukawa coupling is the most important one:
 - \circ Strongest coupling of the Standard Model, ~1
 - Sensitive to New Physics
 - Significant role in EW vacuum stability: Running of Higgs self coupling (λ) sensitive to Top Yukawa coupling (y_t)

D Boumed

- y_t can be determined:
 - From Top mass measurement
 - From Higgs production and γγ decay

Phys. Lett. B. 716 (2012) 214

- y_t can be determined:
 - From Top mass measurement
 - From Higgs production and γγ decay

Sensitive to New Physics contributions

- y_t can be determined:
 - From Top mass measurement 0
 - From Higgs production and yy decay 0

Ο

•

•

ttH signature

- ttH final state combines top pair decay signature and Higgs decay signature → large number of possible final states
- 3 families of signatures:
 - 2*b*+2ү (Н→үү)
 - $4b+X (H \rightarrow bb)$
 - 2b+leptons (H \rightarrow WW, ZZ, $\tau\tau$)

ttH (Η to γγ)

- Small BR compensated by small backgrounds and good diphoton mass resolution
- Signature:
 - Driven by ttbar decay mode
 - Hadronic category:
 - High jet and *b*-tag multiplicities
 - Leptonic category:
 - One or more high quality charged lepton
 - Cuts slightly loosened to be sensitive to tH

Physics Letters B 740 (2015) 222-242

ttH (H to γγ)

Category	N_H	ggF	VBF	WH	ZH	$t ar{t} H$	tHqb	WtH	N_B
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5\substack{+0.5 \\ -0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5^{+0.5}_{-0.3}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

• Analysis strategy:

- Discriminant parameter: $m_{\gamma\gamma}$
- Signal modelling based on MC simulation:
 - Crystal ball + gaussian function
- Higgs background (MC simulation)
- Continuum background data driven
 - Modelled by exponential function
 - Fit for each category to the data sidebands
- Dominant systematic uncertainties:
 - MC modelling:
 - large uncertainty on the underlying event
 - 100% uncertainty on ggF, VBF and WH+HF productions
 - Continuum background modelling
- The analysis is limited by statistical uncertainty.

[%]

Physics Letters B 740 (2015) 222-242

ttH (4b+leptons)

- Benefits from the large H \rightarrow bb branching ratio
- Signature:
 - Categorise events by jet and *b*-tag multiplicities.
 - Single lepton category:
 - Exactly 1 lepton with at least 4 jets and 2 *b*-tagged jets
 - Control regions: (4j, 2b), (4j, 3b), (4j, 4b), (5j, 2b), (5j, 3b) and (≥6j, 2b)
 - Signal regions: $(5j, \ge 4b)$, $(\ge 6j, 3b)$ and $(\ge 6j, \ge 4b)$
 - Opposite sign dilepton category:
 - Exactly 2 opposite sign leptons with at least 2 btags
 - Control regions: (2j, 2*b*), (3j, 2*b*) and (≥4j, 2*b*)
 - Signal regions: (3j, 3b), $(\geq 4j, 3b)$ and $(\geq 4j, \geq 4b)$

Eur. Phys. J. C (2015) 75:349

D. Boumediene - DIS 2016 • 9

• 11/04/2016

ttH (4b+leptons)

- Analysis strategy:
 - Improve sensitivity by keeping low and high significance regions separated.
 - Build Neural Network (NN) discriminant from kinematic variables to separate signal and background in signal-rich regions.
 - Use of Matrix Element Method as input in NN
 - tt+HF modelling: Breakdown of tt+HF events based on flavours
 - Control and signal regions fit simultaneously to constrain the systematic uncertainties
 - MC tag rate function (TRF) instead of cutting on b-tagging multiplicity
- ttbb: main irreducible background
- Main systematic uncertainties: ttbb and ttcc normalisation and shapes (largely constrained by simultaneous fit)

Eur. Phys. J. C (2015) 75:349

single lepton channel

	2 <i>b</i> -tags	3 <i>b</i> -tags	\geq 4 <i>b</i> -tags
4 jets	H_T^{had}	H_T^{had}	H_T^{had}
5 jets	H_T^{had}	NN	NN
\geq 6 jets	H_T^{had}	NN	NN

D. Boumediene - DIS 2016 • 10

• 11/04/2016

ttH (multijets, H \rightarrow bb)

- Benefits from the large H → bb (58%) and all hadronic ttbar (45%) branching ratios
- Large multijet background

- Signature:
 - Multijet final state, no lepton with at least 6 jets and 2 *b*-tags
 - Categorise events by jet and *b*-tag multiplicities
 - Control regions: (6j, 3b) and $(6j, \ge 4b)$
 - Signal regions: (7j, 3b), $(7j, \ge 4b)$, $(\ge 8j, 3b)$ and $(\ge 8j, \ge 4b)$

ttH (multijets, H \rightarrow bb)

- Analysis strategy:
 - MC tag rate function (TRF) instead of cutting on *b*-tagging multiplicity
 - Dedicated data-driven multijet estimation:
 - Tag rate function in 2*b*-tag region
 - Validation in data and MC regions
 - tt+HF modelling: Breakdown of tt+HF events based on flavours
 - BDT as discriminant parameter in all regions
- Main systematic uncertainties:
 - Multijet normalisation
 - ttbb normalisation/modelling: Most irreducible background of the analysis

ttH (multileptons)

- Mainly probe $H \rightarrow W^+W^-$, $H \rightarrow ZZ$ and $H \rightarrow \tau^+\tau^-$
- Signature:
 - Categorise channels by number of leptons:
 - **2leptons**, no τ had: same sign light leptons
 - **3 leptons**: sum of the charge equals ± 1 , no requirement on had τ
 - **2leptons**, 1τ had: same sign light leptons and opposite sign τ
 - 4 leptons: sum of the charge equals 0
 - **1lepton**, 2 τ had: opposite sign τ pair

Physics Letters B 749 (2015) 519-541

ttH (multileptons)

- Analysis strategy:
 - Background estimations:
 - Irreducible bkg: tZ, ttW and ttZ estimated on MC
 - Instrumental bkg: Non –prompt leptons and charge mis ID estimated on data
 - In 1lepton 2τ , main bkg coming from τ fakes modelled by MC
 - Counting experiment
- Main systematics:
 - Leading uncertainty due to non-prompt lepton estimate
 - Other systematics are related to the normalisation and acceptance of ttH, ttW and ttZ

Physics Letters B 749 (2015) 519-541

 \bullet \bullet \bullet

Results

• 11/04/2016

D. Boumediene - DIS 2016 • 15

ttH (Η to γγ)

• Signal strengh from leptonic and hadronic categories:

 $\mu = 1.2 + 2.6 / -1.5$

- ttH into $\gamma\gamma$ interpreted in terms of coupling κ_t : -1.5 < κ_t < 8
- Channels sensitive to tH production:

Physics Letters B 740 (2015) 222-242

- Signal strengh from combined H \rightarrow bb channels: $\mu = 1.4 \pm 1.0$
- Signal strengh from combined multilepton channels: $\mu = 2.1 + 1.4 1.2$

Physics Letters B 749 (2015) 519-541

Eur. Phys. J. C (2015) 75:349

• 11/04/2016

D. Boumediene - DIS 2016 • 17

Combination

- Combination of all Run 1 ttH searches:
 - mttH = 1.7 ± 0.5 (stat) ± 0.6 (syst)
 - Limit: 3.1 × SM (obs), 1.4 × SM (exp)
- 2σ from background-only hypothesis
- Compatible with SM signal

Conclusion

- LHC Run 1 data allowed the Higgs boson discovery
- ATLAS has shown the feasibility and potential of ttH searches in different channels (γγ, *bb*, multileptons)
- ttH searches combined into global Higgs coupling measurement: Eur. Phys. J. C76 (2016)
- Run 2 will allow to target first ttH evidence:
 - Higher luminosity
 - Improved detector performances with IBL
 - Optimised analysis

2

• Increase of signal cross-sections:

ttH × 3.9, ttW/Z × 3, tt × 3.3

