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LO+PS
How to describe exclusive/differential observables?
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Figure 1: left part: Measured 1-T distribution integrated over cosϑT. The upper part shows the detector correction including effects
due to initial state radiation. The part below shows the size of the hadronization correction. The width of the band indicates the
uncertainty of the correction. In the central part the measured 1-T distribution is compared to the expectation from four hadronization
generators, JETSET 7.3 PS D with DELPHI modification of heavy particle decays, JETSET 7.4 PS, ARIADNE 4.06 and HERWIG
5.8c. Also shown is the 1-T range used in the QCD fit. The lower part shows the ratio (Monte Carlo simulation-data)/data for the four
hadronization generators. The width of the band indicates the size of the experimental errors. right part: Same curves as shown in the
left part but for JCEF integrated over cos ϑT.

Parton Shower
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Motivation

Event generators try to describe data in a full simulation. 
So starting from hard processes to the hadronisation and decays. 

Parton showers are needed to get to high multiplicities and 
describe fully exclusive observables.  

Approximation breaks for large angle or hard emissions.  

Merging of LO predictions helps to correct for these emission but 
are still LO.

Aim: Full simulation with NLO corrections for inclusive cross 
section and hard emissions.
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MC@NLO  (& POWHEG)

10 ATLAS: Measurement of kT splitting scales in W ! `⌫ events at
p
s = 7 TeV
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Fig. 6. Distributions of
p
d0 (top) and

p
d1 (bottom) in the W ! e⌫ (left) and W ! µ⌫ (right) channels, shown at particle

level. The data (markers) are compared to the predictions from various MC generators, and the shaded bands represent the
quadrature sum of systematic and statistical uncertainties on each bin. The histograms have been normalised to unity.

8 Conclusions

A first measurement of the kT cluster splitting scales in
W boson production at a hadron–hadron collider has been
presented. The measurement was performed using the 2010
data sample from pp collisions at

p
s = 7 TeV collected

with the ATLAS detector at the LHC. The data corre-
spond to approximately 36 pb�1 in both the electron and
muon W -decay channels.

Results are presented for the four hardest splitting
scales in a kT cluster sequence, and ratios of these splitting
scales. Backgrounds were subtracted and the results were
corrected for detector e↵ects to allow a comparison to dif-
ferent generator predictions at particle level. A weighted
combination was performed to optimise the precision of
the measurement. The dominant systematic uncertainties
on the measurements originate from the cluster energy
scale, pileup and the unfolding procedure.

The degree of agreement between various Monte Carlo
simulations with the data varies strongly for di↵erent re-
gions of the observables. The hard tails of the distributions
are significantly better described by the multi-leg genera-
tors Alpgen+Herwig and Sherpa, which include exact
tree-level matrix elements, than by the NLO+PS genera-
tors Mc@Nlo and Powheg. This also holds true for the
hardest clustering,

p
d0, even though it is formally pre-

dicted at the same QCD leading-order accuracy by all of
these generators.

In the soft regions of the splitting scales, larger varia-
tions between all generators become evident. The genera-
tors based on the Herwig parton shower provide a good
description of the data, while the Sherpa and Powheg+
Pythia predictions do not reproduce the soft regions of
the measurement well.

Eur. Phys. J. C, 73 5 (2013) 2432

NLO matching

Solving the double counting  
problem by subtraction. 

PS[d�matched] = PS0[d�
LO]

+ PS0[d�
V +

Z
d�1P (z)d�LO]

+ PS1[d�
R � d�1P (z)d�LO]

Expand the shower to 
in emissions and  
no emissions.

O(↵S)
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CKKW(-L) (& MLM)

are given to NLL accuracy2 for n = 2, 3, 4 by [14]

R2(Q1, Q) = [∆q(Q1, Q)]2 , (2.2)

R3(Q1, Q) = 2 [∆q(Q1, Q)]2
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q) , (2.3)

R4(Q1, Q) = 2 [∆q(Q1, Q)]2
{

∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∫ Q

Q1

dq′ Γq(q
′, Q)∆g(Q1, q

′)

+
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∫ q

Q1

dq′ Γg(q
′, q)∆g(Q1, q

′)

+
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∫ q

Q1

dq′ Γf(q
′)∆f (Q1, q

′)

}

(2.4)

where Γq,g,f are q → qg, g → gg and g → qq̄ branching probabilities

Γq(q, Q) =
2CF

π

αS(q)

q

(

ln
Q

q
−

3

4

)

(2.5)

Γg(q, Q) =
2CA

π

αS(q)

q

(

ln
Q

q
−

11

12

)

(2.6)

Γf(q) =
Nf

3π

αS(q)

q
, (2.7)

CF = (N2
c −1)/2Nc and CA = Nc for Nc colours, Nf is the number of active flavours,

and ∆q,g are the quark and gluon Sudakov form factors

∆q(Q1, Q) = exp

(

−
∫ Q

Q1

dq Γq(q, Q)

)

(2.8)

∆g(Q1, Q) = exp

(

−
∫ Q

Q1

dq [Γg(q, Q) + Γf(q)]

)

(2.9)

with
∆f(Q1, Q) = [∆q(Q1, Q)]2 /∆g(Q1, Q) . (2.10)

The QCD running coupling αS(q) is defined in the MS renormalization scheme. Part

of the contributions beyond NLL order can be included in the calculation by using
the definition of αS(q) in the bremsstrahlung scheme of Ref. [15].

The Sudakov form factors ∆i(Q1, Q) for i = q, g represent the probability3 for a
quark or gluon to evolve from scale Q to scale Q1 without any branching (resolvable at
scale Q1). Thus R2 is simply the probability that the produced quark and antiquark

2By NLL accuracy, we mean that the leading and next-to-leading logarithmic contributions
αn

S ln2n Q/Q1 and αn
S ln2n−1 Q/Q1 are included in the expressions for Rn(Q1, Q).

3The NLL approximate expressions in Eqs. (2.5,2.6) can lead to ∆i > 1. In that case one should
replace ∆i > 1 by 1.
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Merging several exclusive 
LO cross sections needs: 

1. Find a shower history for 
different multiplicities.

2. Reweight with no emission   
probabilities for intermediate 
scales between the emissions 
and from last scale to shower 
cutoff (except highest mult.) .

3. Reweight the emissions with 
appropriate running couplings.

dominant virtual corrections to a branching process by including leading logarithmic virtual
corrections to all vertices and internal lines, as illustrated in fig. 1, where � represent the one

Figure 1: Schematic leading logarithmic corrections to a branching history.

particle irreducible vertex corrections, and ⌃ represent self energies. In these theories (and
also in gauge theories in physical gauges), the vertex corrections are infrared finite when
at least one external line is off shell, so that they are dominated by the largest virtuality.
Thus, in fig. 1, for the leftmost vertex we have

�(q, q0, q00) ⇡ �(q, q, q), (4.1)

and we will write for simplicity
�(q, q, q) = �(q). (4.2)

On the other hand, we have

�(q)[⌃(q)]
3
2
=

g(q)

g
, (4.3)

where g(q) is the running coupling at the scale q. Thus, if at each vertex with an incoming
line having virtuality q we substitute

�(q) =
g(q)

g[⌃(q)]
3
2

, (4.4)

we immediately see that the net effect of the insertion of vertex and self energy corrections
is the inclusion of the running coupling constant at the scale of the incoming virtuality for
each vertex, and of a factor s

⌃(q0)

⌃(q)
(4.5)

for each line. This yields in the cross sections, i.e. in the full squared amplitude, a factor

�(q0, q) =
⌃(q0)

⌃(q)
, (4.6)

which is the Sudakov form factor.
It is interesting to look in detail to what happens in the case of Higgs plus jet production

and how the apparent contradictions arising from naive scale assignments are solved if the

– 9 –

(picture from MiNLO, see next slide)
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MiNLO (Multi-scale improved NLO) 

weighted with Sudakov suppression (e.g. Higgs):
full Sudakov form factors are included. The couplings and Sudakov factors that multiply
the tree level amplitude in the CKKW approach yield the factor

F = ↵2
S(MH)↵S(pT )

(
exp

"
�CA

⇡b0

(
log
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log
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0
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✓
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log

Q2

⇤

2
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� 1

2

log
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Q2
0

)#)2

. (4.7)

Notice that we have only the two powers of the Sudakov form factors, associated with
the incoming internal and external lines that join at the Higgs production vertex. The
remaining two lines join at the first node, hence their Sudakov form factor is one, since
Q2

0 = p2T . Eq. (4.7) in turn leads to

F = ↵2
S(MH)↵S(pT )
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where we have taken Q2
0 = p2T and Q = MH . Notice that

exp

"
�CA

⇡b0

(
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Q2
0

⇤2

log
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2
� log

Q2

Q2
0

)#
⇡ 1� CA
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↵S

1

2

log

2 Q
2

Q2
0

+O �↵2
S

�
, (4.9)

i.e. the pure Sudakov double logarithm. Thus, applying the CKKW prescription leads to
the conclusion that the scale choice for ↵S is pT for all powers of ↵S, provided a pure LL
Sudakov form factor is included. If one assigns the scale pT to one power of ↵S, and MH to
the remaining two, then the full NLL Sudakov form factor should be included, that takes
care of the scale mismatch.

Thus, the intuitive argument of assigning the same pT scale to all coupling constant is
in a sense correct, but one should not forget that double log Sudakov terms are formally
more important than scale logarithms.

5. Phenomenology

In order to test our prescription, we have implemented it in the POWHEG BOX [13] in a fully
generic way, so that it can be applied to any process of interest. In this context, we have
performed a variation over the scheme presented in Section 3, regarding the first clustering
in the real emission contributions. Since the POWHEG BOX already provides a first clustering,
corresponding to the mapping of the real emission configuration to its underlying Born
structure, we have relied on this mapping rather than performing this clustering explicitly
using the kT algorithm. This procedure is formally equivalent to the one given in Section 3,
and it has the advantage of greater simplicity. We have used R = 1 in our kT clustering
procedure. The Sudakov form factors have been coded both with the expressions of eq. (2.3),
and with the full NLL dependence presented in the appendix. It turns out that the two
expressions differ very little if the value of ⇤ used in the leading order expression is taken

– 10 –

The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and ZJJ).
In particular, it should work well for quantities built out of the hardest n jets, as defined in
the inclusive kT algorithm with a reasonable (i.e. not too small) choice of the R parameter.
We remark, however, that quantities that are sensitive to the radiation in the real event
(i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO method has no
great advantage over the standard ones. In fact, no Sudakov suppression is included for the
radiated parton in the real cross section. On the other hand, the POWHEG method provides
specifically these Sudakov form factors, while maintaining NLO accuracy. Therefore, the
MINLO method combined with POWHEG yields the fully resummed results for all quantities.
We expect that in this framework the POWHEG results improved with the MINLO method will
ease the task of merging multijet samples, by providing associated jet cross section that
merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [29]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.

momentum spectrum of the Higgs boson, computed with the POWHEG BOX ggH generator,
the HJ-MINLO result, and the HJ result with the two alternative scale choices µF = µR = pH

T
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Hamilton, Nason, Zanderighi, JHEP 1210 (2012) 155 

Combining fixed order 
NLO for e.g. H+jet with  
ideas of  
LO merging/resummation. 

Reweight with (analytic)  
shower history.

We focus upon the HJ generator with the MiNLO prescription. As illustrated in [14], this

is obtained by modifying the POWHEG B̄ function with the inclusion of the Sudakov form

factor and with the use of appropriate scales for the couplings, according to the formula

B̄ = ↵2
S

�

M2
H

�

↵S

�

q2T
�

�2
g

(MH , qT)



B
⇣

1� 2�(1)
g

(MH , qT)
⌘

+ V +

Z

d�radR

�

, (2.1)

where we have stripped away three powers of ↵S from the Born (B), the virtual (V ) and

the real (R) contribution, factorizing them in front of eq. (2.1). We will comment later on

the scale at which the remaining power of ↵S in R, V and �(1)
g

is evaluated.

�
g

is the gluon Sudakov form factor

�
g

(Q, qT) = exp

(

�
Z

Q

2

q

2
T

dq2

q2



A
�

↵S

�

q2
��

log
Q2

q2
+B

�

↵S

�

q2
��

�

)

, (2.2)

and

�
g

(Q, qT) = 1 +�(1)
g

(Q, qT) +O �

↵2
S

�

(2.3)

is the expansion of �
g

in powers of ↵S. In the previous equations, qT stands for the Higgs

boson transverse momentum in the underlying Born kinematics, and Q2 its virtuality.

The functions A and B have a perturbative expansion in terms of constant coe�cients

A (↵S) =
1
X

i=1

A
i

↵i

S, B (↵S) =
1
X

i=1

B
i

↵i

S . (2.4)

In MiNLO, only the coe�cients A1, A2 and B1 are used. They are known for the quark [15]

and for the gluon [16] and are given by

Aq

1 =
1

2⇡
CF, Aq

2 =
1

4⇡2
CF K, Bq

1 = � 3

4⇡
CF , (2.5)

Ag

1 =
1

2⇡
CA, Ag

2 =
1

4⇡2
CA K, Bg

1 = �b0 , (2.6)

where

b0 =
11CA � 2n

f

12⇡
, (2.7)

K =

✓

67

18
� ⇡2

6

◆

CA � 5

9
n
f

. (2.8)

The O (↵S) expansion of the Sudakov form factor in eq. (2.3) is given by

�(1)
g

(Q, qT) = ↵S



�1

2
A1 log

2 q2T
Q2

+B1 log
q2T
Q2

�

. (2.9)

In ref. [14], we give a particular prescription for the choice of the renormalization scale in

the power of ↵S accompanying V , R and �(1)
g

, and for the explicit renormalization and

factorization scales present in V and R, that we do not need to specify at this moment.

Now we will assume, at variance with [14] (for reasons that will become clear later), that

the renormalization scale for the power of ↵S accompanying V , R and �(1)
g

is qT.

Our argument is based upon the following considerations:

– 5 –
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NLO merging
Same problems as matching and LO merging (combined).
Idea: Use LO merging and expand to 
         as it was done in the matching. 

O(↵S)

Lowest multiplicity basically behaves as in NLO matching?? 

PS[d�merged] = PSV
0 [d�0�0

µ]

+ PSV
1 [d�1�0

1�
1
µ]

+ PS2[d�
2�0

1�
1
2�

1
µ]

The expanded version constructs  
the subtraction expression as in NLO matching 
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NLO merging
Same problems as matching and LO merging (combined).
Idea: Use LO merging and expand to 
         as it was done in the matching. 

O(↵S)

Lowest multiplicity basically behaves as in NLO matching?? 

PS[d�matched] = PS0[d�
LO]

+ PS0[d�
V +

Z
d�1P (z)d�LO]

+ PS1[d�
R � d�1P (z)d�LO]

PS[d�merged] = PSV
0 [d�0�0

µ]

+ PSV
1 [d�1�0

1�
1
µ]

+ PS2[d�
2�0

1�
1
2�

1
µ]

�0
µ = 1�

Z
d�1P (z) +O(↵2

S)

d�1 = d�R +O(↵2
S)
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NLO merging
Same problems as matching and LO merging (combined).
Idea: Use LO merging and expand to 
         as it was done in the matching. 
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Weight in LO merging: 

history weight
also needs to be  
expanded up to      O(↵S)
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Figure 2: Perturbative uncertainties in MENLOPS and MEPS@NLO predictions of di↵erential jet rates com-
pared to data from ALEPH [37].
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Figure 3: Perturbative uncertainties in MENLOPS and MEPS@NLO predictions of thrust. Compared are
the measurements for the event shape from ALEPH [37] and its moments from OPAL [38].
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The only di↵erence with respect to the usual form of the MC@NLO expression in (2.9) is the term in the
second line which encodes a veto on emissions into the jet region from intermediate lines with its O(↵s)-part
subtracted.

At the relevant order in ↵s, this correction term reads

hOicorrn+k =

Z
d�n+k+1 ⇥(Qn+k+1 �Qcut) On+k+1

n+k+1Y

i=n

�(PS)
i (ti+1, ti)

⇥
(
D(A)

n+k⇥(tn+k � tn+k+1)

"
1 �

 
B̄(A)

n+k

Bn+k
+

n+k�1X

i=n

tiZ

ti+1

d�1Ki

!
�(A)

n+k(tn+k+1, tn+k)

�(PS)
n+k (tn+k+1, tn+k)

#

� Bn+k+1

"
1 �

 
B̄(A)

n+k+1

Bn+k+1
+

n+kX

i=n

tiZ

ti+1

d�1Ki

!
�(A)

n+k+1(tc, tn+k+1)

�(PS)
n+k+1(tc, tn+k+1)

#)
,

(3.8)

and the same reasoning already applied to Eq. (3.3) yields the desired result. For a more detailed discussion,
including the e↵ect of truncated showering, see [19].

The finding above shows that no terms appear due to the merging prescription that violate the logarithmic
accuracy of the parton shower at and around Qcut. To see this, it is su�cient to analyse the first emission
o↵ the (n + k)-jet configuration over the full phase space. The second emission is, of course, completely
determined by the parton shower and thus correct by definition. Also, clearly, the phase space for this first
emission is confined to the region below Qcut, therefore the behaviour above this scale is defined by the
parton-level result with next higher multiplicity, the (n+k+1)-jet configuration. By however extending the
first emission above this cut and analysing the impact on On+k+1 we show that the two regions match as
smoothly as the logarithmic accuracy of the parton shower dictates.

3.3 Renormalisation scale uncertainties

The key aim of the MEPS@NLO approach presented here is to reduce the dependence of the merged prediction
on the renormalisation scale µR, which is employed in the computation of the hard matrix elements. This
scale has not been made explicit so far.

Note that only the dependence on the renormalisation scale is reduced compared to the MEPS method, while
the dependence on the resummation scale, µQ, remains the same. This is a direct consequence of the fact
that the parton-shower evolution is not improved in our prescription, but only the accuracy of the hard
matrix elements. The resummation scale dependence was analysed in great detail in [12].

Following the MEPS strategy, the renormalisation scale should be determined by analogy of the leading-order
matrix element with the respective parton shower branching history [5]. In next-to-leading order calculations,
however, one needs a definition which is independent of the parton multiplicity. The same scale should be
used in Born matrix elements and real-emission matrix elements if they have similar kinematics, and in
particular when the additional parton of the real-emission correction becomes soft or collinear. This can be
achieved if we define the renormalisation scale for a process of O(↵n

s ) as [24]

↵s(µ
2
R)

n =
nY

i=1

↵s(µ
2
i ) , (3.9)

a procedure that has been used in LO merging for some time. Here, µ2
i are the respective scales defined by

analogy of the Born configuration with a parton-shower branching history4.

The renormalisation scale uncertainty in the MEPS@NLO approach is then determined by varying µR ! µ̃R,
while simultaneously correcting for the one-loop e↵ects induced by a redefinition in Eq. (3.9). That is, the
Born matrix element is multiplied by

↵s(µ̃
2
R)

n

 
1� ↵s(µ̃2

R)

2⇡
�0

nX

i=1

log
µ2
i

µ̃2
R

!
, (3.10)

4 In the case of the real-emission correction and the corresponding dipole subtraction terms we consider the underlying Born
configuration instead. The same scale definition is used in the parton shower and, consequently, in the Sudakov form factors.
Of course, the nodal scales µi found in the backward clustering on the Born-like configuration of a single event then enter the
truncated showering.
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Expanding (naturally)  
produces expressions used in  
the MiNLO ansatz. 

3.1 Definition of the MEPS@NLO technique

We propose a method based on the following expression for the expectation value of an arbitrary infrared-
finite observable O

hOi =

Z
d�n B̄(A)

n

"
�(A)

n (tc, µ
2
Q)On +

µ2
QZ
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2
Q)⇥(Qcut �Qn+1) On+1

#

+

Z
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n �(PS)
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2
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+
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d�n+2 H(A)
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(PS)
n+1 (tn+2, tn+1)�

(PS)
n (tn+1, µ

2
Q)⇥(Qn+1 �Qcut) On+2 + . . . ,

(3.1)

where again the obvious phase space arguments in the matrix element contributions and splitting kernels
have been suppressed for better readability, and where they have been moved to subscripts in the observables.
The dots indicate contributions from higher parton-level multiplicities, which are dealt with in an iterative
procedure as detailed in Sec. 3.2.

The square bracket on the first line and third line is generated by weighted parton showers, as discussed in

Sec. 4.2, while all Sudakov factors �(PS) are generated by standard shower algorithms. The terms d�nB̄
(A)
n

and d�n+1H
(A)
n correspond to the fixed-order seed events. A convenient Monte-Carlo algorithm to generate

the factor Bn/B̄
(A)
n will be discussed in Sec. 4.

It is easy to show that next-to-leading order accuracy is maintained for observables sensitive to �n+1 at
Q > Qcut, where Q is the transverse momentum scale of the first emission, i.e. of parton n+ 1. Expanding

the Sudakov form factor �(PS)
n (t, µ2

Q) in the third line to first order and combining it with the square bracket
on the same line yields correction terms which are at most of O(↵2

s).

In order to show the logarithmic accuracy of the procedure, Eq. (3.1) is rewritten as follows

hOi = hOiMC@NLO + hOicorr , (3.2)

with hOiMC@NLO given by (2.9). Taking into account only n+ 1 parton final states the correction term this
time is given by 3
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(3.3)

3Additional contributions are at most of O(↵2
sL

2) and thus do not impair the logarithmic or fixed order accuracy we intend
to prove.

7

In addition one needs  
to expand the intermediate 
Sudakov factors.
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concerned. The second-hardest jet, whose single-inclusive observables are not shown here,

is expected to have a similar behaviour as the leading one, which is what we have indeed

explicitly verified.

Figure 1: Exclusive jet multiplicity. Data from ref. [28], compared to Herwig++ (left

panel) and Pythia8 (right panel) predictions. The FxFx uncertainty envelope (“Var”)

and the fully-inclusive central result (“inc”) are shown as green bands and red histograms

respectively. See the end of sect. 2 for more details on the layout of the plots.

Figure 2: As in fig. 1, for the transverse momentum of the 1st jet.

The exclusive jet multiplicity (fig. 1) is very well predicted by both MCs, up toNjet = 3.

Although in a statistically non-significant way, the central Herwig++ prediction slightly

undershoots the data, at variance with the Pythia8 one; this very minor di↵erence between

the two MCs is basically an overall e↵ect, and can be accounted for by the total-rate results

of table 2. The lack of high-multiplicity matrix elements starts to be visible for Njet � 4,

with Pythia8 dropping faster than Herwig++ (whose central prediction is at the border

of the data error band up to Njet = 7); it must be kept in mind that this multiplicity region

is entirely dominated by MC e↵ects, and formally of LL accuracy. The impact of multi-

parton matrix elements, measured by the distance between the FxFx and the inclusive

predictions, is dramatic.

– 11 –

FxFx

Fx Fx+Papaefstathiou, Prestel,  
Torrielli  JHEP 1602 (2016) 131 

J
H
E
P
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Figure 3. As in figure 1, with Sudakov reweighting.

has kinks at pT (j2) ≃ d2 ≃ 30GeV, analogous to those affecting pT (j1) and d1 (if a bit

smaller). The pseudorapidities of the hardest and second-hardest jets are presented in the

upper panels of figure 4, for pT (jk)>pcut
T

≡ 30GeV. In both cases, the merged predictions

are more central than those obtained with the standalone H + 0j MC@NLO simulations,

owing to the contribution of the 1-parton sample. Still, since pseudorapidities receive the

most important contributions from the region pT (jk) ≃ pcut
T

, the 0-parton sample will

typically be dominant (except for very large pcut
T

, which is not the case here), with the 1-

parton sample providing a subleading correction. Hence, the onset of the 1-parton sample

regime determines directly the amount of migration towards central η values w.r.t. the

standalone H + 0j results. In turn, this onset is controlled by the matching scale; this

explains why the systematics affecting η(j1) and η(j2) is larger than for other observables.

In the case of η(j1), the Alpgen result is in fact quite close to the NLO-merged prediction

– 22 –

Frederix, Frixione JHEP12(2012)061 

Staging  multiple MC@NLO expressions  
with phase space restrictions on emissions.

Analytical Sudakov suppression, MiNLO-like scale choice 
and introduction of a smooth transition function  
between shower and ME region
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Unitarised Merging

of parton distributions is given by

x±i−1f
±
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±
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(B.17)

With this, we can write the expansion of the product of PDF ratios to O
(
α1
s (µR)

)
as
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(B.18)

These integrals can be calculated by explicit numerical integration. Remember that f̂ has

been defined with regularised splitting kernels [49]

P̂qq(z) = CF
1 + z2

(1− z)+
+

3

2
CF δ(1 − z) = P̂q̄q̄(z) (B.19)

P̂gq(z) = CF
1 + (1− z)2

z
= P̂qq(1− z) = P̂gq̄(z) (B.20)

P̂gg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

6
[11CA − 4nfTR] δ(1 − z) (B.21)

P̂qg(z) = TR
[
z2 + (1− z)2

]
. (B.22)

– 50 –

The „subtract-what-you-add“-method of merging NLO.

Inspired by the LoopSim method for nNLO Rubin, Salam, Sapeta  
JHEP 1009 (2010) 084

Plätzer JHEP 1308 (2013) 114 Lonnblad, Prestel JHEP 1302 (2013) 094 

Major Difference to other merging schemes:

Bn�
0
n�

n
µ ! Bn�

0
n �

Z qn

µ
Bn+1�

0
n+1

Less influence on inclusive observables.

UNLOPS:
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Herwig NLO Merging

LHC: W

± ! µ±⌫
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ATLAS Collaboration, JHEP 1409 (2014) 145 ATLAS, Eur. Phys. J. C73 (2013) 2432 

NLO Merging: Correction to B1
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O(↵
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) expansion of parton shower weights cuts on multiple emissions

Goal:
NLO corrections in matrix element region ✓n

ME

Problems:
double counting and multiple singular regions
PS-weights: �0

n

= 1 + ↵
s

f (Q, q1, z...) ! same order in ↵
s

change of NLO cross section
Solutions:

expand the PS in ↵
s

(also the PS-weights)
define ME regions for multiple emissions
unitarize the additional expressions
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Sudakov suppression
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MC@NLO-like contributions  
below the merging scale 

Data from and

Based on developments in Herwig7 and publicly  
available in Herwig 7.1. 

(JB, Plätzer, Gieseke)
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Herwig NLO Merging
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see also Peters talk
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NLO merging of 2 NLO show smooth  
transition at the merging scale.  
(remember the large K-factor) 

Right: Up to 3 NLO merged. 
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The value of        is usually  
tuned to data. 
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Motivated by CMW scheme:

Approximates already NLO  
to first emission.  

Need to take this into account to  
describe data.
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Summary

Gave an overview on various merging schemes.

Methods are used but still need to be improved.

The merging should not spoil the NLO accuracy  
of the inclusive cross section.

Choice of couplings and pdf scales can improve 
the prediction.


