Understanding jets in heavy ion collisions

Korinna Zapp

CENTRA-IST (Lisbon), CERN

DIS, Hamburg 11.-15.04.2016

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction
General Consideratio

MC approaches

JEWEL

The model

Introduction

jets in A+A different from p+p:

- rate reduced by factor 2-4
- modifications to jet substructure

larger asymmetry in di-jet events

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Considerations
Analytical approaches

JEWEL

The mode Results

Introduction

naive picture of heavy ion collision:

- jets produced in earliest phase of collision
- propagate through dense and hot QCD matter
- what is known about this medium:
 - ▶ it is deconfined
 - ▶ it shows collective behaviour
 - characteristic scales are soft

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

Analytical approaches

EWEL

The model Results

Introduction

Why jet quenching is a hard problem

- spatio-temporal structure matters
- re-scattering and jet evolution on same timescale
- hard part of fragmentation pattern unchanged
- jet and background strongly or weakly coupled?
- what exactly is the background?
- multi-scale problem
- ▶ interferences
- ⇒ very different approaches

What we might learn from it

- interplay between weakly and strongly coupled regimes
- nature of the medium

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

Analytical approaches

MC approaches

EWEL

The model

What happens to jets in medium?

Perturbative approaches

- ▶ jet medium interactions at weak(ish) coupling
- jet resolves quasi-particles
- thermalisation through elastic re-scattering (slow)
- energy loss through QCD bremsstrahlung
- only calculable in certain approximations eikonal kinematics and/or single gluon emission and/or . . .
- ▶ destructive interference in multiple scattering LPM effect
- zero-temperature perturbation theory
 - re-scattering of a hard parton off a collection of scattering centres
 - can include a parton shower like "vacuum" emission
- thermal field theory
 - re-scattering of hard parton in thermal parton bath
 - difficult to accommodate parton shower evolution

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in $\mathsf{A}{+}\mathsf{A}$

Introduction

General Considerations

Analytical approaches

IEWEL

The model

What happens to jets in medium?

Non-perturbative approach

- ▶ interactions between jet & medium at large coupling
- AdS/CFT techniques
 - no jets
 - correspondence to QCD not exact
 - energy loss by drag

Monte Carlo models

- can go beyond analytic calculations
- ▶ in particular: full jet evolution
- build on an analytic calculation
- involve modelling

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Considerations
Analytical approaches

IEWEL

The model

Gluon radiation in eikonal limit

- ▶ high energy approximation: $E \gg \omega \gg k_{\perp}, q_{\perp}$
- ▶ static scattering centres → no collisional energy loss
- ightharpoonup single gluon radiation ightharpoonup unsuitable for jet description
- ▶ destructive interference → LPM-effect

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

Analytical approaches

JEWEI

The model Results

LPM-Effect: Heuristic Discussion

Baier, Schiff, Zakharov, Ann. Rev. Nucl. Part. Sci. 50 (2000) 37

gluon decoheres from projectile when relative phase arphi>1

$$\varphi = \left\langle \frac{k_{\perp}^2}{2\omega} \, \Delta z \right\rangle = \frac{\hat{q}L^2}{2\omega} = \frac{\omega_{\rm c}}{\omega}$$

coherence time of radiated gluons:

$$t_{\mathsf{coh}} \simeq rac{2\omega}{k_{\perp}^2} \simeq rac{2\omega}{\hat{q} t_{\mathsf{coh}}} \quad \Rightarrow \quad t_{\mathsf{coh}} = \sqrt{rac{2\omega}{\hat{q}}}$$

gluon energy spectrum:

$$\omega rac{\mathsf{d}^2 \emph{I}}{\mathsf{d}\omega \mathsf{d}z} \simeq rac{\lambda}{t_{\mathsf{coh}}} \omega rac{\mathsf{d}^2 \emph{I}^{(1)}}{\mathsf{d}\omega \mathsf{d}z} \propto lpha_{\mathsf{s}} \sqrt{rac{\hat{q}}{\omega}}$$

radiative energy loss:

$$\Delta E = \int_{0}^{L} dz \int_{0}^{\omega_{c}} d\omega \, \omega \frac{d^{2}I}{d\omega dz} \propto \alpha_{s} \hat{q} L^{2}$$

Understanding jets in heavy ion collisions

Korinna Zapp

ets in A+A

Introduction

Analytical approaches

EWEL

The model Results

Can a perturbative picture make sense?

can compute coherent QCD bremsstrahlung in eikonal limit

formation time of medium induced emissions:

$$au_{\mathsf{coh}} = \sqrt{rac{2\omega}{\hat{q}}}$$

- \Rightarrow soft gluons decohere first...
- ► formation angle:

$$heta_{\mathsf{coh}} pprox rac{k_{\perp}}{\omega} = rac{\sqrt{\hat{q} au_{\mathsf{coh}}}}{\omega} = rac{(2\hat{q})^{1/4}}{\omega^{3/4}}$$

- \Rightarrow ... and at large angles
- decoherence rate of colour dipole:

$$\Delta_{\mathsf{med}} = 1 - e^{-(\theta_{\mathsf{jet}}/\theta_{\mathsf{med}})^2}$$

- ⇒ hard (vacuum) structures stay coherent longer
- © qualitatively in line with observations

Understanding jets in heavy ion collisions

Korinna Zapp

lets in A+A

Introduction

General Consideration

Analytical approaches

WEL

The model Results

Jet quenching Monte Carlos

Zero-temperature perturbation theory

- HIJING
- ► HYDJET++
- ► Q-PYTHIA/Q-HERWIG
- ▶ JEWEL
- ▶ parton cascades: VNI/BMS, AMPT, BAMPS, . . .
- ► MCs for single-inclusive hadrons: CUJET, MATTER++

Thermal field theory

MARTINI

Strong coupling

▶ "The Hybrid"

Phenomenological models

YaJEM

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Consideration

Analytical approaches

MC approaches

The model

Q-PYTHIA/Q-HERWIG

Armesto, Cunqueiro, Salgado, Eur. Phys. J. C 63 (2009) 679

Armesto, Corcella, Cunqueiro, Salgado, JHEP 0911 (2009) 122

- idea: minimal, theory based model
- ▶ jet production: ME + PS from PYHTIA/HERWIG
- radiative energy loss: modified splitting function: $P_{\text{tot}} = P_{\text{vac}} + \Delta P$, ΔP from BDMPS gluon spectrum
- ► collisional energy loss: none
- medium: specified by user
- hadronisation: Lund string/Herwig cluster

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Consideratio

Analytical approache

MC approaches

JEWEL

The model

MARTINI

Schenke, Gale, Jeon, Phys. Rev. C 80 (2009) 054913

- ▶ idea: MC based on AMY results on induced radiation
- ▶ jet production: ME + PS from PYTHIA
- ► radiative energy loss: from AMY transition rates
- ► collisional energy loss: pQCD+HTL transition rate
- medium: hydro
- hadronisation: Lund string

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduc

Analytical approaches

MC approaches

...- -----

IEWEL

The model

The Hybrid

Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal, JHEP 1410 (2014) 19

- idea: standard parton shower evolution with a posteriori energy loss partons
- ▶ jet production: ME + PS from PYTHIA
- ► radiative energy loss: none
- collisional energy loss: from AdS/CFT calculation of energy loss of light quarks and gluons
- medium: hydro
- hadronisation: Lund string

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Consideratio

Analytical approache

MC approaches

. . .

The model

JEWEL: Basic idea and assumptions

Basic idea

- complexity of problem asks for a MC event generator
- hard re-scattering resolves medium's partonic structure
- describe interactions using standard pQCD techniques
 I.O MF + PS

LO ME + PS

Assumptions

- medium as seen by jet: collection of quasi-free partons
- use infra-red continued perturbation theory to describe all jet-medium interactions
- formation times govern the interplay of different sources of radiation
- ▶ use results from eikonal limit to include LMP-effect

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Consideration

Analytical approaches

WEL

The model

ightharpoonup jet production in initial N+N collisions: ME+PS

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introdu

Analytical approaches

JEWEL

The model

- ▶ jet production in initial N+N collisions: ME+PS
- ► re-scattering: ME+PS
 - ► generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introdu

Analytical approaches

MC approaches

=VVEL

The model Results

- ▶ jet production in initial N+N collisions: ME+PS
- re-scattering: ME+PS
 - ► generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics
- emission with shortest formation time is realised
 - ▶ all emission ("vacuum" & "medium induced") are equal
 - hard structures remain unperturbed

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Consideration

Analytical approach

EWEL

The model

- ▶ jet production in initial N+N collisions: ME+PS
- re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics
- emission with shortest formation time is realised
 - ▶ all emission ("vacuum" & "medium induced") are equal
 - hard structures remain unperturbed
- ► LPM interference Zapp, Stachel, Wiedemann, JHEP 1107 (2011) 118
 - also governed by formation times
 - without kinematic restrictions

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction

General Consideration

Analytical approach

EWEL

The model Results

Probabilistic formulation of the LPM-effect

analytical calculation interpolates between

incoherent production

coherent production

$$au_1 \ll L$$

$$au_1\gg L$$

- ho $au_1 \equiv \frac{2\omega}{({m k}+{m q}_1)^2}$ is the gluon formation time
- → momentum transfers during formation time act coherently

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in $A+\lambda$

Introduction

General Consideration

Analytical approaches

EWEL

The model

Coherent emission

Kinematics

coherent scattering centres act as one one momentum transfer:

$$\omega \frac{\mathrm{d}^3 I^{(1)}}{\mathrm{d}\omega \mathrm{d}\mathbf{k}} \propto \int \!\mathrm{d}\mathbf{q} \, |A(\mathbf{q})|^2 R(\mathbf{k}, \mathbf{q})$$

two momentum transfers:

$$\omega \frac{\mathrm{d}^3 I^{(2)}}{\mathrm{d}\omega \mathrm{d}\boldsymbol{k}} \propto \int \mathrm{d}\boldsymbol{q}_1 \, \mathrm{d}\boldsymbol{q}_2 \, |A(\boldsymbol{q}_1)|^2 |A(\boldsymbol{q}_2)|^2 R(\boldsymbol{k}, \boldsymbol{q}_1 + \boldsymbol{q}_2)$$

 consistent determination of scattering centres and formation time

Emission probability

▶ suppression compared to incoherent emission by factor $1/N_{coh}$ N_{coh} : number of coherent momentum transfers

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

General Consideration

Analytical approaches

EWEL

The model

Event generation

- ▶ jet production MEs & ISR: PYTHIA Sjostrand et al., JHEP 0605 26
- ► nuclear PDFs: EPS09 Eskola, Paukkunen & Salgado, JHEP 0904 (2009) 065
- ▶ jet evolution in medium: JEWEL
- medium: do whatever you like, e.g.
 - ► geometry: Glauber model Eskola et al., Nucl. Phys. B 323 37 distribution of jets and temperature profile
 - ▶ EOS: ideal quark-gluon gas $\Rightarrow n \propto T^3$ & $\epsilon \propto T^4$
 - ▶ boost-invariant longitudinal expansion Bjorken, PRD 27 (1983)
 - \Rightarrow $T(au) \propto au^{-1/3} \Rightarrow n(au) \propto au^{-1}$ & $\epsilon(au) \propto au^{-4/3}$
 - initial conditions: $T_i = 486 \,\text{MeV}$ at $\tau_i = 0.6 \,\text{fm}$

Shen and Heinz, Phys. Rev. C 85 (2012) 054902

hadronisation: PYTHIA string fragmentation

 $\tau = 0.6 \, \mathrm{fm} \qquad \qquad \tau = 4 \, \mathrm{fm}$ $\tau = 0.6 \, \mathrm{fm} \qquad \qquad \tau = 4 \, \mathrm{fm}$

Understanding jets in heavy ion collisions

Korinna Zapp

ets in A+A

Introduction

General Consideration

Analytical approaches

WFI

The model

Angular variation

ATLAS, Phys. Rev. Lett. 111 (2013) 152301

centrality dependent angular variation

suppression depends on amount of matter seen by jet

Understanding jets in heavy ion collisions

Korinna Zapp

ets in A+A

Introduct

Analytical approaches

MC approaches

JEWEI

The mode

Conclusions

Jet quenching

- ▶ jets in A+A: characteristic differences from p+p
- arise from re-interaction of jets in soft QCD medium
- severe limitations of analytical approaches
- ⇒ need MCs to describe full jet evolution
- prize: loss of analytical control

JEWEL

- consistent modelling of modified jet evolution using standard pQCD techniques
- jet evolution + elastic and inelastic re-scattering
- LPM interference
- reasonable description of LHC jet data
 showed only one example, many more observables

Understanding jets in heavy ion collisions

Korinna Zapp

Jets in A+A

Introduction General Considerati

Analytical approaches
MC approaches

JEWEL

The model Results