

MANCHESTER

1824

New insights into Coulomb gluons

René Ángeles-Martínez

In collaboration with Jeff Forshaw Mike Seymour

JHEP 1512 (2015) 091 & arXiv:1602.00623

DIS16

Outline

Some progress in including Coulomb gluons and colour interference in partons showers

- Coulomb gluons and the breaking of *strict* collinear factorisation of QCD (squared) amplitudes.
- Coulomb gluons in 'gaps between jets' → Super-leading logarithms.

–but there is (was) an ordering (evolution-) variable problem.

 Colour interference (evolution) of soft corrections from first principles.

 $\begin{aligned} k^{\mu} &<< \sqrt{2p_i \cdot p_j} \\ \hline \text{Colour operator acting on } |2 \rangle \\ ig_s^2 \mu^{2\epsilon} \mathbf{T}_i \cdot \mathbf{T}_j \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{-p_i \cdot p_j}{[p_j \cdot k \pm i0][-p_i \cdot k \pm i0][k^2 + i0]} |2 \rangle \end{aligned}$

After contour integration:

Tree-level collinear factorisation

For a general on-shell scattering:

Hence, universal (process-independent) contributions at cross section level.

Generalised factorisation beyond tree level

Catani, De Florian & Rodrigo JHEP 1207 (2012) 026

This collinear factorisation generalises to all orders

$$|n \rangle \simeq S_{p} |n-m+1\rangle$$

$$Sp = Sp^{(0)} + Sp^{(1)} + Sp^{(2)} + ...$$

$$S_{P}^{(\alpha)} = S_{P}^{(\alpha)} (\tilde{P}, \{C\}, \{NC\})$$

Violation of strict (processindependent) factorisation!

One loop

The problem first seeds at this order, and is specific to hadron-hadron collisions:

$$S_{P}^{(1)} = S_{P_{f}}^{(1)}(\tilde{P}, \{C\}) + \tilde{\Delta}(\tilde{P}, \{C\}, \{NC\}) S_{P}^{(0)}$$

One loop

The problem first seeds at this order, and is specific to hadron-hadron collisions:

$$S_{P}^{(1)} = S_{P_{f}}^{(1)} (\tilde{P}, \{C\}) + \tilde{\Delta} (\tilde{P}, \{C\}, \{NC\}) S_{P}^{(0)}$$

 $\widehat{\Delta} = \widehat{\Delta} (\{ NC\}) \longleftrightarrow T_{(C \cap in)}, T_{(C \cap out)}, T_{(NC \cap in)}, T_{(NC \cap out)} \neq 0$

One loop

The problem first seeds at this order, and is specific to hadron-hadron collisions:

$$S_{P}^{(1)} = S_{P_{f}}^{(1)} (\tilde{P}, \{C\}) + \tilde{\Delta} (\tilde{P}, \{C\}, \{NC\}) S_{P}^{(0)}$$

 $\widehat{\Delta} = \widehat{\Delta} (\{ NC\}) \longleftrightarrow T_{(C \cap in)}, T_{(C \cap out)}, T_{(NC \cap in)}, T_{(NC \cap out)} \neq 0$

However, these violations cancel at cross section level:

$$\widetilde{\Delta} + \widetilde{\Delta}^+ = 0$$

Coulomb gluons and colour coherence

Coulomb gluons and colour coherence

Three loops (no escape)

Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066 Catani, De Florian & Rodrigo JHEP 1207 (2012) 026

 Violation of strict factorisation no longer vanish at squared amplitude level (N^4LO= Hard process + 1 collinear + 3 loops).

Coulomb gluons and factorisation

Conclusion: coherence allows one to "unhook" on-shell gluons and recover collinear factorisation. But it fails for Coulomb gluons:

Can we make sense of this nested structure?

Worth remarking: the violations of collinear factorisation discussed here are of soft origin & should cancel for sufficiently inclusive observables!

Concrete case: 'gaps between jets'

(Forshaw, Kyrieleis & Seymour hep /0604094 ; /0808.1269)

Soft corrections $Q_0 \ll q^{\mu} \ll Q$ $d\sigma_m = |\mathcal{M}(q_1, ...q_m)|^2 \phi \, dPS$

$$\ln^n \frac{Q^2}{Q_0^2} \gg 1$$

Structure of logarithmic corrections

Radiation outside the gap cancels?

Structure of logarithmic corrections

Radiation outside the gap cancels?

It does, but what about radiation from outside?

Structure of logarithmic corrections

Radiation outside the gap cancels?

It does, but what about radiation from outside?

Additional, also leading, non-global logarithms

• M.Dasgupta & G.P.Salam, JHEP 0203:017,2002

$$\sigma(Q, Q_0; y) \sim \sigma_0(Q) \left(1 + \dots f_n(Y) \left(\alpha_s \ln \frac{Q}{Q_0}\right)^n + \dots\right)$$

(Forshaw, Kyrieleis, Seymour JHEP 0608 (2006) 059 & 0809 (2008) 128)

 Included Coulomb gluons & colour interference. Claim: The leading logs (in Q/Q_0) due to one gluon outside of the gap is:

(Forshaw, Kyrieleis, Seymour JHEP 0608 (2006) 059 & 0809 (2008) 128)

 Included Coulomb gluons & colour interference. Claim: The leading logs (in Q/Q_0) due to one gluon outside of the gap is:

- Gluon (k) integrated everywhere outside gap:
 - Final-state collinear singularity \rightarrow cancel
 - Initial-state singularity? NO → Super-leading logarithm

$$\begin{split} \sigma_{1,\text{out=hardest}} &= \left(\frac{2\alpha_s}{\pi}\right)^4 \int_{Q_0}^Q \frac{dk_T}{k_T} \left(2 \ h \ \frac{Q}{k_T}\right) \left(\int_{Q_0}^{k_T} \frac{dk_T'}{k_T'}\right)^3 \frac{Y \pi^2}{3} \\ & \left\langle m_0 \left| t_1^2 \Big[[t_1 \cdot t_4, t_1 \cdot t_2], t_1 \cdot t_2 \Big] - t_1^{a\dagger} \Big[[T_1 \cdot T_4, T_1 \cdot T_2], T_1 \cdot T_2 \Big] t_1^a \right| m_0 \right\rangle. \end{split}$$

$$\sim \sigma_0 \left(\frac{2\alpha_s}{\pi}\right)^4 \pi^2 Y \ln^5 \frac{Q}{Q_0} + \mathcal{O}\left(\ln^4 \frac{Q}{Q_0}\right)$$

- Gluon (k) integrated everywhere outside gap:
 - Final-state collinear singularity \rightarrow cancel
 - Initial-state singularity? NO → Super-leading logarithm

This is the same colour structure that appears in the violation of strict collinear factorisation! Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066

$$\sigma_{1,\text{out=hardest}} = \left(\frac{2\alpha_s}{\pi}\right)^4 \int_{Q_0}^{Q} \frac{dk_T}{k_T} \left(2h\frac{Q}{k_T}\right) \left(\int_{Q_0}^{k_T} \frac{dk'_T}{k'_T}\right)^3 \frac{Y\pi^2}{3} \right) \left(\int_{Q_0}^{k_T} \frac{dk'_T}{k'_T}\right)^3 \frac{Y\pi^2}{3} \left[\int_{Q_0}^{k_T} \frac{dk'_T}{k'_T}\right] \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] - t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] - t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] - t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[\left[t_1 \cdot t_4, t_1 \cdot t_2\right], t_1 \cdot t_2\right] + t_1^{a\dagger} \left[t_1 \cdot t_4, t_1 \cdot t_2\right] + t_1^{a} \left[t_1 \cdot t_4\right] + t_1$$

2

$$\sim \sigma_0 \left(\frac{2\alpha_s}{\pi}\right)^4 \pi^2 Y \ln^5 \frac{Q}{Q_0} + \mathcal{O}\left(\ln^4 \frac{Q}{Q_0}\right)$$

- Gluon (k) integrated everywhere outside gap:
 - Final-state collinear singularity \rightarrow cancel
 - Initial-state singularity? NO → Super-leading logarithm

$$\sigma_{1,\text{out=hardest}} = \left(\frac{2\alpha_s}{\pi}\right)^4 \int_{Q_0}^{Q} \frac{dk_T}{k_T} \left(2h\frac{Q}{k_T}\right) \left(\int_{Q_0}^{k_T} \frac{dk_T'}{k_T'}\right)^3 \frac{Y\pi^2}{3} \right) \left(\int_{Q_0}^{k_T} \frac{dk_T'}{k_T'}\right)^3 \frac{Y\pi^2}{3} \right) \left(\int_{Q_0}^{k_T} \frac{dk_T'}{k_T'}\right)^3 \frac{Y\pi^2}{3} \right)$$

$$\sim \sigma_0 \left(\frac{2\alpha_s}{\pi}\right)^4 \pi^2 Y \ln^5 \frac{Q}{Q_0} + \mathcal{O}\left(\ln^4 \frac{Q}{Q_0}\right)$$

→And it is believed that
$$\,\sim lpha_s^n\,\ln^{2n-3}{Q\over Q_0}\,\,n\geq 4$$

(Keates & Seymour JHEP 0904 (2009) 040)

This is the same

colour structure that

appears in the

violation of strict

collinear factorisation!

Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066

Summary/ So..is factorisation violated in GBJ?

• Violations of strict collinear factorisation are of soft origin. Then, a Bloch-Nordsieck mechanism should cancel the singularities below Q_0 , the scale of inclusivity (Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066).

Summary/ So..is factorisation violated in GBJ?

- Violations of strict collinear factorisation are of soft origin. Then, a Bloch-Nordsieck mechanism should cancel the singularities below Q_0 , the scale of inclusivity (Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066).
- Hence, for 'gaps between jets' (an insufficiently inclusive observable) first factorise at μ ~ Q₀, and then evolve up to Q.

$$\sigma_{ab}(p_a, p_b) = \int_0^1 \mathrm{d}\eta_1 \,\mathrm{d}\eta_2 \,f_{i/a}(\eta_1, \mu^2) \,f_{j/b}(\eta_2, \mu^2) \,\sigma_{ij}(\eta_1 p_a, \eta_2 p_b, \mu^2) + \mathcal{O}\left(\frac{1}{\mu^2}\right)$$

LO: OK NLO: OK N²LO: OK (Hermitian) N³LO: OK (Trace=0) N⁴LO: Factorisation violated! \rightarrow Super-leading logs.

All orders proof is required!

Coulomb gluons and colour evolution

Coulomb gluons are related to the violations of strict collinear factorisation and super-leading logs but

- Which is the correct evolution variable?
- Can we derive it from first principles?

Coulomb gluons and colour evolution

Coulomb gluons are related to the violations of strict collinear factorisation and super-leading logs but

- Which is the correct evolution variable?
- Can we derive it from first principles?

One-loop diagrammatic calculation assuming only that all gluon are soft, but not relative softness (JHEP 1512 (2015) 091 & 1602.00623)

Ordering in the simplest case (DY): cutting rules

- Gauge invariantly: Imaginary (Coulomb) part of loop integrals can be written as

Ordering in the simplest case (DY): cutting rules

- Gauge invariantly: Imaginary (Coulomb) part of loop integrals can be written as

Ordering in the simplest case (DY): cutting rules

- Gauge invariantly: Imaginary (Coulomb) part of loop integrals can be written as

Ordering in the simplest case (DY)

Ordering in the simplest case (DY)

Ordering in the simplest case (DY)

Ordering in two emission case (JHEP 1512 (2015) 091)

Coulomb gluons and colour evolution

Our fixed order calculations suggest that the one-loop amplitude of a general hard scattering with N soft-gluon emissions (ordered in softness $q_i \lambda \sim q_{i+1}$) is

$$\left| n_{N}^{(1)} \right\rangle = \sum_{m=0}^{N} \sum_{i=2}^{p} \sum_{j=1}^{i-1} \mathbf{J}^{(0)}(q_{N}) \cdots \mathbf{J}^{(0)}(q_{m+1}) \mathbf{I}_{ij}(q_{m+1}^{(ij)}, q_{m}^{(ij)}) \mathbf{J}^{(0)}(q_{m}) \cdots \mathbf{J}^{(0)}(q_{1}) \left| n_{0}^{(0)} \right\rangle$$
$$+ \sum_{m=1}^{N} \sum_{j=1}^{n+m-1} \sum_{k=1}^{n+m-1} \mathbf{J}^{(0)}(q_{N}) \cdots \mathbf{J}^{(0)}(q_{m+1}) \mathbf{I}_{n+m,j}(q_{m+1}^{(ij)}, q_{m}^{(jk)}) \mathbf{d}_{jk}(q_{m}) \mathbf{J}^{(0)}(q_{m-1}) \cdots \mathbf{J}^{(0)}(q_{1}) \left| n_{0}^{(0)} \right\rangle,$$

Coulomb gluons and colour evolution

Our fixed order calculations suggest that the one-loop amplitude of a general hard scattering with N soft-gluon emissions (ordered in softness $q_i \lambda \sim q_{i+1}$) is

$$\left| n_{N}^{(1)} \right\rangle = \sum_{m=0}^{N} \sum_{i=2}^{p} \sum_{j=1}^{i-1} \mathbf{J}^{(0)}(q_{N}) \cdots \mathbf{J}^{(0)}(q_{m+1}) \mathbf{I}_{ij}(q_{m+1}^{(ij)}, q_{m}^{(ij)}) \mathbf{J}^{(0)}(q_{m}) \cdots \mathbf{J}^{(0)}(q_{1}) \left| n_{0}^{(0)} \right\rangle$$
$$+ \sum_{m=1}^{N} \sum_{j=1}^{n+m-1} \sum_{k=1}^{n+m-1} \mathbf{J}^{(0)}(q_{N}) \cdots \mathbf{J}^{(0)}(q_{m+1}) \mathbf{I}_{n+m,j}(q_{m+1}^{(ij)}, q_{m}^{(jk)}) \mathbf{d}_{jk}(q_{m}) \mathbf{J}^{(0)}(q_{m-1}) \cdots \mathbf{J}^{(0)}(q_{1}) \left| n_{0}^{(0)} \right\rangle,$$

where the virtual insertion operator:

$$\mathbf{I}_{ij}(a,c) = \mathbf{I}_{ij}(a,b) + \mathbf{I}_{ij}(b,c), \qquad \mathbf{I}_{ij}(0,b) = \frac{\alpha_s}{2\pi} \frac{c_{\Gamma}}{\epsilon^2} \mathbf{T}_i \cdot \mathbf{T}_j \left[\left(\frac{b^2}{4\pi\mu^2} \right)^{-\epsilon} \left(1 + i\pi\epsilon \,\tilde{\delta}_{ij} - \epsilon \ln \frac{2p_i \cdot p_j}{b^2} \right) \right],$$

describes the non-emission evolution of partons i and j from b to a.

$$q^{\mu} = \alpha p_{i}^{\mu} + \beta p_{j}^{\mu} + (q_{T}^{(ij)})^{\mu}$$

$$\sum_{j} \mathbf{d}_{ij}(q) = \sum_{j} \mathbf{T}_{j} \frac{p_{j} \cdot \varepsilon}{p_{j} \cdot q} = \mathbf{J}^{(0)}(q)$$
Key point: Ordering variable: dipole kT
$$\sum_{j} \mathbf{d}_{ij}(q) = \sum_{j} \mathbf{T}_{j} \frac{p_{j} \cdot \varepsilon}{p_{j} \cdot q} = \mathbf{J}^{(0)}(q)$$

$$\sum_{j} 21$$

$$= -$$
Gauge invariant.
$$Correct IR poles = 0$$

1.- Successively insert emissions on external legs

1.- Successively insert emissions on external legs

1.- Successively insert emissions on external legs

a)

3.- and apply effective rules:

1.- Successively insert emissions on external legs

3.- and apply effective rules:

b)

a)

Non-emission evolution operator

$$\mathbf{I}_{ij}(a,b) = \frac{\alpha_s}{2\pi} c_{\Gamma} \mathbf{T}_i \cdot \mathbf{T}_j \int d(k^{(ij)})^2 (k^{(ij)})^{-2\epsilon} \begin{bmatrix} \ln \sqrt{2}p_i^+ / k^{(ij)} \\ \int \\ \ln \sqrt{2}p_j^- / k^{(ij)} \end{bmatrix} dy \frac{p_i \cdot p_j}{2[p_j \cdot k][p_i \cdot k]} - \frac{i\pi \delta_{ij}}{(k^{(ij)})^2} \\ \times \theta(a < k^{(ij)} < b) \end{bmatrix}$$

This is the same one-loop operator that appears at NLO but kT ordered!

$$k^{\mu} = \alpha p_{i}^{\mu} + \beta p_{j}^{\mu} + (k^{(ij)})^{\mu}$$

For a general scattering $|n\rangle$ we need spheres

The effective rules are the same:

Loop-expanded approach

The dipole kt evolution approach is equivalent to a Catani-Grazzini loopexpansion (RAM, Forshaw & Seymour hep-ph/0007142):

$$\begin{aligned} \left| n_N \right\rangle &= \left(g_s \mu^\epsilon \right)^N \mathbf{J}(q_N) \cdots \mathbf{J}(q_1) \left| n_0 \right\rangle \\ \mathbf{J} &= \mathbf{J}^{(0)} + \mathbf{J}^{(1)}, \qquad \left| n \right\rangle = \left| n_0^{(0)} \right\rangle + \left| n_0^{(1)} \right\rangle, \\ \mathbf{J}^{(1)}(q_a) &= \frac{1}{2} \sum_{j \neq i}^{n+a-1} \frac{\alpha_s}{2\pi} \frac{c_{\Gamma}}{\epsilon^2} \left(\frac{(-p_i \cdot q_a - i0)(-p_j \cdot q_a - i0)}{(-p_i \cdot p_j - i0)8\pi} \right)^{-\epsilon} \mathbf{T}_{q_a} \cdot \mathbf{T}_i \, \mathbf{d}_{ij}(q_a). \end{aligned}$$

Manifestly, analytic function of Lorentz invariants! This approach has been studied for e+e- annihilation (Feige & Schawartz PhD thesis & Phys.Rev. D90 (2014)) and is used in a recent resummation of non-global logs (1501.03754).

Summary / Conclusions

- Coulomb gluons distinguish initial and final partons and hence introduce colour (quantum) interference.
- Play an essential role in the colour evolution of hard processes
 - -super-leading logarithms
 - -violation of strict factorisation
- Can be incorporated at *amplitude level* as an evolution in dipole transverse momentum
- Can evolution approach be developed into a partonshower like algorithm?

Two emissions case

Again, gauge invariantly the amplitude the sum of product of on-shell scattering amplitudes (assuming all gluons are soft but not relative softness):

This time, ordering is a feature of particular kinematics, e.g. when emissions are ordered in softness $q_2 \sim \lambda q_1$.

(Relation to) Loop-expanded approach

There is a different way of organising these contributions:

An interesting property

Can be derived from