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Outline

!
• Coulomb gluons and the breaking of strict collinear 

factorisation of QCD (squared) amplitudes. 
!

• Coulomb gluons in 'gaps between jets’ → Super-leading 
logarithms. 
–but there is (was) an ordering (evolution-) variable 

problem. 
!

• Colour interference (evolution) of soft corrections from first 
principles.
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Some progress in including Coulomb gluons and colour 
interference in partons showers



Hard process: a vector  
colour + spin Colour operator acting on 

��2
↵

ig2sµ
2✏Ti ·Tj

Z
d4k

(2⇡)4
�pi ·pj

[pj ·k±i0][�pi ·k±i0][k2+i0]

��2
↵

kµ <<
p

2pi · pj

Introduction: one-loop soft gluon correction
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After contour integration:

(On-shell gluon: Purely real) (Coulomb gluon: Purely imaginary)

g2sµ
2✏Ti ·Tjpi · pj

Z
d4k

(2⇡)4


(2⇡)�(k2)✓(k0)

[pj · k][pi · k]
+ i�̃ij

(2⇡)2�(pi · k)�(�pj · k)
2[k2]

� ��2
↵

˜�ij =

8
><

>:

1 if i, j in ,

1 if i, j out ,

0 otherwise.

Introduction: one-loop soft gluon correction
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After contour integration:
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Introduction: one-loop soft gluon correction
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Tree-level collinear factorisation

Hence, universal (process-independent) contributions at 
cross section level.

Colour + Spin operator.!
Depends only on collinear partons Depends only on non-collinear partons

For a general on-shell scattering:
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Generalised factorisation beyond tree level!
Catani, De Florian & Rodrigo JHEP 1207 (2012) 026

This collinear factorisation generalises to all orders

but

Violation of strict (process-
independent) factorisation!
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One loop
The problem first seeds at this order, and is specific to hadron-hadron collisions:
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One loop
The problem first seeds at this order, and is specific to hadron-hadron collisions:
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One loop
The problem first seeds at this order, and is specific to hadron-hadron collisions:

However, these violations cancel at cross section level:
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Coulomb gluons and colour coherence

Effectively, correction to 
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Coulomb gluons and colour coherence

Effectively, correction to 

Unavoidable colour correlation 
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Two loops














































































































Three loops (no escape)!
Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066 
Catani, De Florian & Rodrigo JHEP 1207 (2012) 026




Two loops














































































































- Violation of strict factorisation no longer vanish at squared 
amplitude level (N^4LO= Hard process + 1 collinear + 3 loops).

pi ·k ± i0
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Coulomb gluons and factorisation
Conclusion: coherence allows one to “unhook” on-shell gluons and  

recover collinear factorisation. But it fails for Coulomb gluons: 

Can we make sense of this nested structure?

instead of
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Worth remarking: the violations of collinear factorisation discussed here are of soft 
origin & should cancel for sufficiently inclusive observables!



Y/2, ✓
Y/2, ⇡ � ✓

⇠ Q

⇠ Q

Q ⇠

Q ⇠

inside the gap

outside the gap

qT < Q0

Any qT

d�m = |M(q1, ...qm)|2 � dPS

Concrete case: 'gaps between jets’ !
( Forshaw, Kyrieleis & Seymour  hep /0604094 ; /0808.1269 )

Large logsSoft corrections

lnn
Q2

Q2
0

� 1

Q0 ⌧ qµ ⌧ Q
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Structure of logarithmic corrections

Radiation outside the gap cancels? 
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Structure of logarithmic corrections

Radiation outside the gap cancels? 

It does, but what about radiation from outside?
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Structure of logarithmic corrections

Radiation outside the gap cancels? 

Additional, also leading, non-global logarithms 
• M.Dasgupta & G.P.Salam, JHEP 0203:017,2002

It does, but what about radiation from outside?
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A surprise: super-leading logs!
(Forshaw, Kyrieleis, Seymour JHEP 0608 (2006) 059 & 0809 (2008) 128)

• Included Coulomb gluons & colour interference. Claim: The leading 
logs (in Q/Q_0) due to one gluon outside of the gap is:

�
1�out

=
�2↵s

⇡

Z Q

Q0

dkT
kT

Z

out

dyd�

2⇡
[⌦V + ⌦R]
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A surprise: super-leading logs!
(Forshaw, Kyrieleis, Seymour JHEP 0608 (2006) 059 & 0809 (2008) 128)

• Included Coulomb gluons & colour interference. Claim: The leading 
logs (in Q/Q_0) due to one gluon outside of the gap is:

�
1�out

=
�2↵s

⇡

Z Q

Q0

dkT
kT

Z

out

dyd�

2⇡
[⌦V + ⌦R]

�⇤

Key assumption: Real and 
virtual radiation ordered  

(evolved) in “kT”

Exponentiation of one-loop 
corrections: on-shell inside 
of the gap + Coulomb part

BN: cancellation below 
inclusivity scale Q_0

�����e
� 2↵s

⇡

R Q
Q0

dk0
T

k0
T

⇤
|4i

�����

2

/ 0-out + ⌦V + 2-out + . . .

⌦R =

�����e
� 2↵s

⇡

R kT
Q0

dk00
T

k00
T

�
D(k)e

� 2↵s
⇡

R Q
kT

dk0
T

k0
T

⇤��4
↵
�����

2
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A surprise: super-leading logs
!

• Gluon (k) integrated everywhere outside gap: 
– Final-state collinear singularity → cancel 
– Initial-state singularity? NO → Super-leading 

logarithm

⇠ �0(
2↵s

⇡
)4⇡2Y ln5

Q

Q0
+O

✓
ln4

Q

Q0

◆
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A surprise: super-leading logs
!

• Gluon (k) integrated everywhere outside gap: 
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logarithm

This is the same 
colour structure that 

appears in the 
violation of strict 

collinear factorisation! 
Forshaw, Seymour, Siodmok 

JHEP 1211 (2012) 066 
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A surprise: super-leading logs
!

• Gluon (k) integrated everywhere outside gap: 
– Final-state collinear singularity → cancel 
– Initial-state singularity? NO → Super-leading 

logarithm

This is the same 
colour structure that 

appears in the 
violation of strict 

collinear factorisation! 
Forshaw, Seymour, Siodmok 

JHEP 1211 (2012) 066 

→And it is believed that (Keates & Seymour 
JHEP 0904 (2009) 040 )

⇠ �0(
2↵s

⇡
)4⇡2Y ln5

Q

Q0
+O

✓
ln4

Q

Q0

◆
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Summary/ So..is factorisation violated in GBJ?

• Violations of strict collinear factorisation are of soft origin. Then, a 
Bloch-Nordsieck mechanism should cancel the singularities below Q0 , 
the scale of inclusivity (Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066).
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Summary/ So..is factorisation violated in GBJ?

• Violations of strict collinear factorisation are of soft origin. Then, a 
Bloch-Nordsieck mechanism should cancel the singularities below Q0 , 
the scale of inclusivity (Forshaw, Seymour, Siodmok JHEP 1211 (2012) 066).

• Hence, for 'gaps between jets' (an insufficiently inclusive 
observable) first factorise at µ ~ Q0, and then evolve up to Q.

LO: OK 
NLO: OK 
N2LO: OK (Hermitian) 
N3LO: OK (Trace=0)  
N4LO: Factorisation violated! → Super-leading logs.

All orders proof is required! 
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The ordering variable problem 
Banfi, Salam, Zanderighi arXiv:1001.4082

Collinear & out 
of the gap

Eikonal & central 
k4T ⇠ E4

– Under similar assumptions, found super-leading logs in 
wide class of event shapes but
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The ordering variable problem 
Banfi, Salam, Zanderighi arXiv:1001.4082

Collinear & out 
of the gap

Eikonal & central 
k4T ⇠ E4

– Under similar assumptions, found super-leading logs in 
wide class of event shapes but

Choice of ordering  
variable is crucial!
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Coulomb gluons and colour evolution
Coulomb gluons are related to the violations of strict collinear 
factorisation and super-leading logs but!
!
-  Which is the correct evolution variable?!
- Can we derive it from first principles?
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Coulomb gluons and colour evolution
Coulomb gluons are related to the violations of strict collinear 
factorisation and super-leading logs but!
!
-  Which is the correct evolution variable?!
- Can we derive it from first principles?

Exact  rules for 3 & 4 -gluon 
vertices  & ghost 

Eikonal 
approximation

One-loop diagrammatic calculation assuming only that all gluon 
are soft, but not relative softness (JHEP 1512 (2015) 091 & 1602.00623) 
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Ordering in the simplest case (DY): cutting rules
- Gauge invariantly: Imaginary (Coulomb) part  of loop integrals can be 

written as
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Ordering in the simplest case (DY): cutting rules
- Gauge invariantly: Imaginary (Coulomb) part  of loop integrals can be 

written as

On-shell

2 ! 3

On-shell

2 ! 0
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Ordering in the simplest case (DY): cutting rules
- Gauge invariantly: Imaginary (Coulomb) part  of loop integrals can be 

written as

Coulomb contributions:  
Product of on-shell scattering 
amplitudes. On-shell

2 ! 2

On-shell

2 ! 1

On-shell

2 ! 3

On-shell

2 ! 0
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Ordering in the simplest case (DY)
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Ordering in the simplest case (DY)

Decomposition in 
colour and spin
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Ordering in the simplest case (DY)

i.e. non-trivial test of k_T  
ordering!

Decomposition in 
colour and spin
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Ordering in two emission case!
(JHEP 1512 (2015) 091)
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Proof: 
decompositions in 

colour+spin for 
�q1 ⇠ q2, � ⌧ 1

Ordering in two emission case!
(JHEP 1512 (2015) 091)
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Proof: 
decompositions in 

colour+spin for 
�q1 ⇠ q2, � ⌧ 1

This is the ordering 
assumption used in the 

calculation of the super-logs 
in `gaps between jets'

C(a, b) = �i⇡
↵

2⇡
Ti ·Tj

Z b2

a2

d(k(ij))2

(k(ij))2
.

h
C(0, q(ij)2 )J(0)(q2)J

(0)(q1) + J(0)(q2)C(q(ij)2 , q(ij)1 )J(0)(q1)

+ J(0)(q2)J
(0)(q1)C

⇣
q(ij)1 ,

p
2pi · pj

⌘ i
|2(0)i,

Ordering in two emission case!
(JHEP 1512 (2015) 091)
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Coulomb gluons and colour evolution

���n(1)
N

E
=

NX

m=0

pX

i=2

i�1X

j=1

J(0)(qN ) · · ·J(0)(qm+1) Iij(q
(ij)
m+1, q

(ij)
m )J(0)(qm) · · ·J(0)(q1) |n(0)

0 i

+
NX

m=1

n+m�1X

j=1

n+m�1X

k=1

J(0)(qN ) · · ·J(0)(qm+1) In+m,j(q
(ij)
m+1, q

(jk)
m )djk(qm)J(0)(qm�1) · · ·J(0)(q1)|n(0)

0 i,
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Our fixed order calculations suggest that the one-loop amplitude of a general
hard scattering with N soft-gluon emissions (ordered in softness qi� ⇠ qi+1) is



Coulomb gluons and colour evolution

Key point: Ordering 
variable: dipole kT

describes the non-emission evolution of partons i and j from b to a.

- Gauge invariant.  
- Correct IR poles 
- Interpretation: 

ordered evolution! 
- …

Iij(a, c) = Iij(a, b) + Iij(b, c), Iij(0, b) =
↵s

2⇡

c�
✏2

Ti ·Tj

"✓
b2

4⇡µ2

◆�✏ ✓
1 + i⇡✏ �̃ij � ✏ ln

2pi · pj
b2

◆#
,

qµ = ↵pµi + �pµj + (q(ij)T )µ

where the virtual insertion operator:

���n(1)
N

E
=

NX

m=0

pX

i=2

i�1X

j=1

J(0)(qN ) · · ·J(0)(qm+1) Iij(q
(ij)
m+1, q

(ij)
m )J(0)(qm) · · ·J(0)(q1) |n(0)

0 i

+
NX

m=1

n+m�1X

j=1

n+m�1X

k=1

J(0)(qN ) · · ·J(0)(qm+1) In+m,j(q
(ij)
m+1, q

(jk)
m )djk(qm)J(0)(qm�1) · · ·J(0)(q1)|n(0)

0 i,
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Our fixed order calculations suggest that the one-loop amplitude of a general
hard scattering with N soft-gluon emissions (ordered in softness qi� ⇠ qi+1) is



Diagrammatics of dipole kT evolution
1.- Successively insert emissions on 

external legs

22



Diagrammatics of dipole kT evolution
1.- Successively insert emissions on 

external legs
2.- Insert virtual exchanges

Case b)Case a)

22



Diagrammatics of dipole kT evolution
1.- Successively insert emissions on 

external legs
2.- Insert virtual exchanges

Case b)Case a)

3.- and apply effective rules:

a)

22



Diagrammatics of dipole kT evolution
1.- Successively insert emissions on 

external legs
2.- Insert virtual exchanges

Case b)Case a)

3.- and apply effective rules:

a) b)

22



Diagrammatics of dipole kT evolution
1.- Successively insert emissions on 

external legs
2.- Insert virtual exchanges

Case b)Case a)

3.- and apply effective rules:

a)
Gauge invariance

b)
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Non-emission evolution operator

This is the same one-loop operator that appears 
at NLO but kT ordered!

kµ = ↵pµi + �pµj + (k(ij))µ

23

Iij(a, b) =
↵s

2⇡
c�Ti ·Tj

Z
d(k(ij))2(k(ij))�2✏

2

664

ln
p
2p+

i /k(ij)Z

ln
p
2p�

j /k(ij)

dy
pi ·pj

2[pj ·k][pi ·k]
� i⇡�ij

(k(ij))2

3

775

⇥ ✓(a < k(ij) < b)



The effective rules are the same:

For a general scattering

��n
↵
we need spheres

Diagrammatics of dipole kT evolution
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The dipole kt evolution approach is equivalent to a Catani-Grazzini loop-
expansion (RAM , Forshaw & Seymour hep-ph/0007142):

Loop-expanded approach

��nN

↵
= (gsµ

✏)N J(qN ) · · ·J(q1)
��n0

↵

Manifestly, analytic function of Lorentz invariants! This approach has been studied for 
e+e- annihilation (Feige & Schawartz PhD thesis & Phys.Rev. D90 (2014)) and!

is used in a recent resummation of non-global logs (1501.03754).

Dipole kT

J(1)(qa) =
1

2

n+a�1X

j 6=i

↵s

2⇡

c�
✏2

✓
(�pi ·qa � i0)(�pj ·qa � i0)

(�pi ·pj � i0)8⇡

◆�✏

Tqa ·Ti dij(qa).

J = J(0) + J(1),
���n

E
=

���n(0)
0

E
+

���n(1)
0

E
,
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http://arxiv.org/abs/hep-ph/0007142


Summary / Conclusions
• Coulomb gluons distinguish initial and final partons and 

hence introduce colour (quantum) interference. 
!

• Play an essential role in the colour evolution of hard 
processes 
–super-leading logarithms 
–violation of strict factorisation 
!

• Can be incorporated at amplitude level as an evolution 
in dipole transverse momentum 
!

• Can evolution approach be developed into a parton-
shower like algorithm?
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Two emissions case
Again, gauge invariantly the amplitude the sum of product of on-shell scattering amplitudes 

(assuming all gluons are soft but not relative softness):

Set of sets of 
cut graphs

This time, ordering is a feature of particular kinematics, e.g. when emissions

are ordered in softness q2 ⇠ �q1.
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(Relation to) Loop-expanded approach

There is a different way of organising these contributions: 

Independent loop- 
expansion!

One-loop soft-gluon emission 
current (Catani & Grazzini 
Nucl.Phys. B591 (2000))
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An interesting property

Limits commute
Can be derived from Paper in 

preparation.
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