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SU(2) flavor asymmetry
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x=0. The fit yields the values 0=0.20~0.03 and b=0.59
+.0.06 and a contribution to SG of 0.013~0.005 (stat) forx(0.004. The quality of the fit is as good as that in Ref. [1]
and the result is insensitive to the upper limit of the fitted
range (up to x=0.40).
Summing the contributions from the measured and un-

measured regions we obtain for the Gottfried sum

SG=0.235 ~0.026.

Q. 1
0

Q.Q5
II

)k
I I I ~ I I I

0.01 0.10
I I I I I I I

Q

FIG. 1. The difference F~z F2 (ful—l symbols and scale to the
right) and J„'(F~z F2)dx/x —(open symbols and scale to the left) at
Q =4 GeV, as a function of x from the present reevaluation
(circles) and from Ref. [1] (triangles). The extrapolated result SG
from the present vmrk and the prediction of the simple quark-parton
model (OPM) are also shown.

uncertainty from the momentum calibration is reduced com-
pared to that given in Table 2 of Ref. [1], while the other
contributions are unchanged.
To evaluate the contributions to SG from the unmeasured

regions at high and low x, extrapolations of F2—Fz to x= 1
and x=0 were made using the same procedures as described
in Ref. [1]. The contribution from the region x&0.8 is
0.001~0.001. For the region x&0.004, the expression
ax, appropriate for a Regge-like behavior, was again fitted
to the data in the range 0.004&x&0.15 and extrapolated to

The error is the result of combining the statistical and sys-
tematic errors in quadrature, and including the effect of the
(correlated) systematic uncertainties on the extrapolations of
F2—F2 to x= 1 and x=0. This new value of SG agrees well
with that in Ref. [1].However, the total error given here is
larger than that quoted in Ref. [1]due to the more extensive
examination of the systematic uncertainties. Nevertheless,
the result for S& is significantly below the simple quark-
parton model value of 1/3, so that the conclusions of Ref. [1)
are unchanged.
The evaluation of the Gottfried sum at higher Q requires

large extrapolations of the measured values of Fz/F~z at low
x, which rapidly reduces the accuracy of Fz —F2. For this
reason a precise determination of the Gottfried sum from the
NMC data is restricted to Q around 4 GeV .
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One of the seminal discoveries of last 25 years has been
the SU(2) flavor asymmetry in the proton sea, d̄ 6= ū

NMC,  PRD 50, 1 (1994)
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SU(2) flavor asymmetry

paradigm shift - nucleon not simply
3 valence quarks + homogenous      sea!q̄q

vital role played by nonperturbative dynamics,
e.g. chiral symmetry breaking & nucleon’s pion cloud

asymmetry actually predicted a decade earlier
from “Sullivan” process A.W. Thomas, PLB 126, 97 (1983)
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pion momentum distribution in nucleon,
or                   “splitting function”p ! ⇡+n

One of the seminal discoveries of last 25 years has been
the SU(2) flavor asymmetry in the proton sea, d̄ 6= ū

y
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Chiral effective theory

pseudoscalar interaction often used for simplicity -
results generally different from pseudovector theory

gA = 1.267

f� = 93 MeV

L�N =
gA
2f�

⌅̄N�µ�5 ⌃⇤ · ⇧µ⌃⇥ ⌅N � 1

(2f�)2
⌅̄N�µ ⌃⇤ · (⌃⇥ ⇥ ⇧µ⌃⇥)⌅N

Weinberg, PRL 18, 88 (1967)

term  +  higher order+ �NN= �g⇡NN  ̄N i�5~⌧ · ~⇡  N

Splitting function can be computed in chiral effective 
theory of QCD (e.g. chiral perturbation theory)

At lowest order, effective (low-energy)       Lagrangian⇡N
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Chiral effective theory

Coupling of e.m. current to nucleon dressed by pions

(d)(c)

(e)

(g)(f)

(a) (b)

Kroll-Ruderman
(for gauge invariance)

tadpole

N  rainbow

bare wfn renormalization

rainbow⇡

bubble⇡

Ji, WM, Thomas, PRD 88, 076005 (2013)
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Chiral effective theory

Coupling of e.m. current to nucleon dressed by pions

(d)(c)

(e)

(g)(f)

(a) (b)

tadpole

N  rainbow

bare wfn renormalization

rainbow⇡

bubble⇡

contribute to 
d̄� ū

Kroll-Ruderman
(for gauge invariance)

Ji, WM, Thomas, PRD 88, 076005 (2013)
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(d)(c)

(e)

(g)(f)

(a) (b)

Pion splitting functions
Splitting function for pion rainbow diagram
has on-shell and   -function contributions

(a) (b) (c)

k

p�

f⇡(y) = f (on)(y) + f (�)(y)

equivalent in
PV & PS theories

singular    = 0 term
only in PV theory

y

y =
k+

p+

Bubble diagram contributes only at    = 0  (hence x = 0)

f (bub)(y) =
8

g2A
f (�)(y)

y

Salamu, Ji, WM, Wang
PRL 114, 122001 (2015)
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Infrared behavior is model independent 

leading nonanalytic (LNA) structure of moments

Thomas, WM, Steffens, PRL 85, 2892 (2000)

Pion splitting functions
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can only be generated by pion loops - nonzero    cloud 
contribution predicted by QCD!

⇡

vital e.g. for chiral extrapolation of lattice data
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Extraction of parton distributions from lattice QCD 5
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17
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Ultraviolet-divergent integrals for point-like particles

Finite size of nucleon provides natural scale to regularize 
integrals, but does not prescribe form of regularization

freedom in choosing regularization prescription

F = exp
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Pion splitting functions

BishariF = y�↵⇡(t)
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Detailed shape of splitting function depends on 
regularization, but common general features

e.g. on-shell
 function
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At x > 0, only on-shell part contributes

Pion splitting functions
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Flavor asymmetry
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with exception of      cutoff and Bishari models,
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Flavor asymmetry
E866          data can be fitted with range of regulators.d̄� ū

Is pion cloud the only explanation for the asymmetry?

are there other data that can discriminate
between different mechanisms?

semi-inclusive production of  “leading neutrons” (LN)

at HERA!
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Leading neutron production at HERA

ZEUS
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simultaneous fit never previously been performed

ZEUS & H1 collaborations measured spectra of neutrons
produced at very forward angles, 

xL ⇡ 1� y

✓n < 0.8 mrad

can data be described within same framework
as E866 flavor asymmetry?
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At large y, non-pionic mechanisms contribute
(e.g. heavier mesons, absorption)

Leading neutron production at HERA
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Kopeliovich et al., PRD 85, 114025 (2012)
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To reduce model dependence, fit the value of 
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⇡
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Fit requires higher momentum pions with increasing

Leading neutron production at HERA

ycut

values from fit to E866 data only
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Leading neutron production at HERA

Combined fit to HERA LN and E866 Drell-Yan data
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McKenney, N. Sato, WM, C. Ji
PRD 93, 700205 (2016)
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Leading neutron production at HERA

Combined fit to HERA LN and E866 Drell-Yan data
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# pts = 54 108 266187
McKenney, N. Sato, WM, C. Ji
PRD 93, 700205 (2016)
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Leading neutron production at HERA

Fit to ZEUS LN spectra for                (t-dependent exponential)ycut = 0.3
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Extracted pion structure function

stable values of      at                            from combined fitF⇡
2 4⇥10�4 . x⇡ . 0.03

shape similar to GRS fit to       Drell-Yan data (for             ),
but smaller magnitude
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Predictions at TDIS kinematics
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Outlook

Combined analysis can be extended by including
also       Drell-Yan data⇡N

Generalize parametrization by fitting individual
pion valence and sea quark PDFs, rather than  F⇡

2

constrain large-    regionx⇡ (x⇡ & 0.2)

Ultimate goal will be to use all data sensitive to
pion structure (including TDIS, EIC?) to constrain
pion PDFs over full range 10�4 . x⇡ . 1
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