

Forward energy flow per pseudorapidity and limiting fragmentation with CMS at 13TeV

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

11-15 April 2016, DESY, Hamburg

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Basic facts and motivation

- LHC operation in 2015
 - Setting the stage for successful Run 2
 - Record center-of-mass energy, 13 TeV
 - Luminosities corresponding to pileup up to ~40 interactions/bx
 - Several periods of low luminosity / low PU running
- Physics motivation
 - New exciting physics is always on top of a 'pedestal' of (at least) several soft interactions which we never measured at this energy scale
 - Modeling of soft-inclusive particle production have important consequences for precision high-p_τ measurements (example: top mass)
 - Useful input for further tuning of hadronic interaction models
 - Important reference for models used in cosmic ray physics to be able to extrapolate to highest energies

CMS is nicely equipped for benchmark energy flow measurements

What has been done so far at LHC?

Measurements performed for pp (900 GeV, 7 TeV), pPb (5TeV), PbPb (2.76 TeV)

We naturally continue along this line and measure at 13TeV as well and focus on the forward region (3.15 < $|\eta|$ < 6.6) where most of the energy goes

Hadronic interaction models

- Pythia8, tuned to LHC Run 1 results
 - Hard scattering matrix elements + parton showering + string fragmentation
 - Highly 'tunable': fragmentation, underlying event including/colour reconnections/partonic re-scattering, diffraction
 - Underlying event tune Monash 2013
 - CMS tunes CUETP8M1/CUETP8S1
 - MBR model for diffraction
- EPOS-LHC and QGSJET II.04,

tuned to LHC Run 1 results,

commonly used in cosmic ray physics,

focus on soft interactions

- Gribov-Regge multiple scattering + string fragmentation
- EPOS includes collectivity/hydrodynamic component in a parametrized form
- EPOS compared to QGSJET is more 'phenomenological'/'tunable'
- There are nice tools to compare corrected results to a large variety of models (example: mcplots.cern.ch); we picked up just a few for to draw basic conclusions

Energy flow in data: sum up calorimeter energies for two events classes

Data corrected to particle level

- Count only stable particles, w/o energy threshold (hadrons and leptons with cτ > 10 mm, excluding μ's and v's)
- Energy in each η-bin: sum of particle energies
- Soft-inclusive-inelastic events: $\xi = M_x^2 / \sqrt{s} > 10^{-6}$
- Non-single-diffractive-enhanced events: at least one particle (charged or neutral) in nominal HF acceptance on both sides w.r.t. nominal IP of CMS
- 4 models used (take average + envelope for uncertainties, correction factor values below 2.5)
 - Pythia8 Monash
 - Pythia 4C+MBR
 - EPOS-LHC
 - QGSJETII.04

Check of systematic effects

	Soft-inclusive inelastic events	Non-single diffractive events
Model dependence of correction factor	< 3.5%	
Influence of noise on selection	< 1.75%	< 0.5%
Influence of noise on energy sums	< 1.2%	
Calorimeter global energy scale in $3.15 < \eta < 5.20$	10%	
Calorimeter global energy scale in $5.20 < \eta < 6.6$	17%	

- The spread in the model predictions is large for soft-inclusive-inelastic events (INEL)
- Pythia8 Monash vs EPOS/QGSJET: comparable results
- CUETP8M1 vs CUETP8M1+MBR: effect of variation of diffractive parameters
- CUETP8S1+uncertainties: dominant contribution from color reconnection parameters

Overall reasonable description of data by predictions given uncertainties of data

Is there a way to compare results obtained at different center-of-mass energies?

Hypothesis of limiting fragmentation for high energy hadronic interactions: longitudinal scaling behavior in terms of the, $\eta' = \eta - y_{b}$, (pseudo)rapidity shifted by beam rapidity; soft particle production in the region close to beam rapidity, $\eta' \sim 0$, becomes independent of center-of-mass energy

Limiting fragmentation

- Simple geometry factors to get E_T from E; particle level definition adjusted to agree with previous data
- Obvious trend on which results obtained at different center-of-mass energies line up

Summary

- We present measurements of energy flow in the forward region, in pseudorapidity range 3.15 < $|\eta|$ < 6.6, in pp-collisions at 13 TeV
- Energy flow as a function of pseudporapidity is studied for two event classes, softinclusive-inelastic and non-single-diffractive
- We compared our data to several hadronic interaction models: Pythia8, EPOS-LHC, QGSJETII.04
- The spread in model predictions is large, in general models provide reasonable description of data, given the uncertainties
- Results are studied in terms of shifted pseudorapidity variable, ηy_{b} , and compared to earlier data at 900 GeV and 7 TeV
- Overall consistency with hypothesis of limiting fragmentation is found

Rich forward instrumentation around common interaction region of CMS and TOTEM experiments

Central region of CMS detector

[JINST 7 (2012) P10002]

Pseudorapidity density: central vs forward, non-diffractive vs diffractive

[JHEP 11 (2012) 033]

[arXiv:1405.0722, EPJC 74 (2014) 2053]

- Collider experiments forward region very important for understanding of high energy hadronic interactions
- Central-forward correlations
- Spread of model predictions for SD-enhanced sample

