$\begin{array}{l} \text{BOOSTING}\,HH \to (b\overline{b})(b\overline{b}) \\ \text{WITH}\,\text{MULTIVARIATE}\,\text{TECHNIQUES} \end{array}$

BEHR, BORTOLETTO, FROST, ISSEVER, NH, ROJO [1512.08928]

Nathan Hartland University of Oxford

DIS 2016 DESY Hamburg, 13/04/16

Resonance at ~126 GeV is pretty consistent with expectations for SM Higgs.

So far, we have only explored the **minimum** of the EWSB potential

$$V = \frac{1}{2}m_H^2 H^2 + v\lambda_3 H^3 + \frac{1}{4}\lambda_4 H^4$$

To understand the full potential, we need to measure (*at least*) double-Higgs production

Clear difficulty: HH production cross-section at LHC is *tiny* **14TeV NNLO** $\sigma_{HH} \simeq 40$ fb factor of ~10³ smaller than single H Compounded by usual H reconstruction problems

Final State	BF
bbbb	33%
bbWW	13%
bb\tau\tau	3.5%
WWWW	5.3%

Lots of cross-section decaying to challenging fully hadronic final state Recent ATLAS bound: $\sigma(pp \rightarrow hh \rightarrow b\bar{b}b\bar{b}) < 1.22 \text{ pb}$ (Dirk Duschinger's Talk, ATLAS-CONF-2016-017)

(Data is king: 3000 fb⁻¹ HL-LHC)

$HH \rightarrow (b\overline{b})(b\overline{b})$ backgrounds

Fully hadronic (gg)Higgs channel: experimentally challenging on a lot of fronts

Primary challenge: Overwhelming QCD background

Signal	Cross-section			
HH	4.0.10 ⁻² pb		Background	Cross-section
			bbbb	1.8·10 ³ pb
Background	Cross-section		bbjj	3.5·10 ⁵ pb
ZH	7.7•10 ⁻¹ pb		jjjj	5.8·10 ⁶ pb
ttH	4.6•10 ⁻¹ pb		tt(bbjjjj)	3.5·10 ³ pb
bbH	6.1·10 ⁻¹ pb	_		

$HH \rightarrow (b\bar{b})(b\bar{b})$ **BACKGROUNDS**

	Background	Cross-sectio	on Con	ntributio	ns from	light jet	s usually	y discou	nted				
	bbbb	1.8•10 ³ pb	Dy l	o-tagging	z argum	ents. As	sume (of	DIIMISII	cally):				
	bbjj	3.5•10 ⁵ pb		$\epsilon_{\rm tag} = 0.8$ $\epsilon_{\rm mistag} = 0.01$									
•	Then tagged 4b cross section ~ $\epsilon_{tag}^4 \cdot \sigma_{bbbb} = 7.3 \cdot 10^2 \text{ pb}$ and tagged 2b2j cross section ~ $\epsilon_{tag}^2 \epsilon_{mistag}^2 \cdot \sigma_{bbjj} = 22 \text{ pb}$												
C	onsider instead	the fraction		0 b-jet	1 b-jet	2 b-jet	3 b-jet	4 b-jet	$\epsilon_{ m sel}$				
of	events containi	ng n b-jets	bbbb	1%	8%	27%	44%	20%	8.4%				
	$(R = 0.4 ak_T p_T)$	> 20 GeV)	bbjj	9%	42%	49%	1%	0.1%	0.04%				

 $\epsilon_{\text{sel},bbbb} \cdot \sigma_{bbbb} \simeq 150 \text{pb}$ $\epsilon_{\text{sel},bbjj} \cdot \sigma_{bbjj} \simeq 140 \text{pb}$

Contributions e.g bbjj are not negligible w.r.t 'irreducible' 4b background

$HH \to (b\overline{b})(b\overline{b}) \text{ ANALYSIS TOPOLOGIES}$

Resolved Reconstruct Higgs decay products in four separate (small-R) jets

 10^{-2} Reconstruction efficiency Signal 0.9 Background 10^{-3} 0.8 0.7 Normalised ×Sec 10-4 0.6 0.5 0.4 0.3 10^{-6} 0.2 Resolved Anti-K, R = 0.4 jets 0.1 Cambridge-Aachen R = 1.2 jet 10⁻⁷ 0 200 600 900 100 300 400 500 700 800 200 300 600 700 800 100 400 500 Leading Higgs p_T (GeV) Higgs boson p₋ [GeV]

(Wardrope et al 1410.2794)

- Captures bulk of HH cross-section
- Lower efficiency at high pT
- Combinatorics

(e.g UCL Study [1410.2794])

(Gouzevitch et al 1303.6636)

$HH \to (b\overline{b})(b\overline{b}) \text{ ANALYSIS TOPOLOGIES}$

Boosted Reconstruct Higgs decay products in two (large-R) jets

(e.g Durham Study [1404.7139])

OUR APPROACH

- Consider closely QCD multi-jet background (not just 4b) Assuming relatively optimistic b-tagging parameters $\epsilon_b = 0.8, \quad \epsilon_c = 0.1, \quad \epsilon_j = 0.01$
- Handle boosted and resolved analysis topologies Ensure good coverage of final state phase space
- Use plenty of information on jet substructure MD tags, Splitting scales, N-subjettiness, Energy correlations
- Investigate how multivariate analysis can boost significances Keep cut-based analysis loose, try to to make as much use as possible of MVA
- Assess robustness of results under the addition of pile-up (PU) How feasible are these methods in a more realistic environment?

RECONSTRUCTION DETAILS

'Small-R jet' b-tagged aKT R=0.4 jet $p_T > 40 \,\text{GeV}, \ |\eta| < 2.5$ 'Large-R jet'

double b-tagged aKT R=1.0 jet $p_T > 200 \,\mathrm{GeV}, \ |\eta| < 2.5$ Require BDRS mass-drop tag

1.00

0.75

0.50

0.25

____0.00 900

Boosted *Two Large-R jets*

200

300

400

Higgs pT

0

100

Intermediate

One Large-R jet, two Small-R jets

Resolved Four Small-R jets

Reso b-jets

Blue: Resolved efficiency Green: Boosted efficiency

► Higgs mass window cut |m - 125| < 40 GeV

600

500

Prioritise selection Boosted-Intermediate-Resolved

700

800

MULTIVARIATE ANALYSIS

Classify events as signal/background with ANN (*Similar architecture to NNPDF*)

MVA input includes standard event kinematics, along with for large-R jets:

- \blacktriangleright k_T -splitting scales
- ► Ratio of 2-to-1 subjettiness
- \blacktriangleright E.C.F double-ratios C_2 , D_2

Channel	#inputs
Boost	21
Inter.	17
Resol.	13

PILEUP SIMULATION

Introduce an additional 80 PU vertices per hard event.

PU is managed by a combination of

- **SoftKiller** subtraction at the event level
- Large-R jets trimmed

[Cacciari et al 1407.0408]

[Krohn et al 0912.1342]

Category		signal	backg	round	$S/\sqrt{B_{\rm tot}}$	$S/\sqrt{B_{4b}}$	$S/B_{\rm tot}$	S/B_{4b}
		$N_{\rm ev}$	$N_{ m ev}^{ m tot}$	$N_{\rm ev}^{\rm 4b}$				
Deastad	no PU	290	$1.2 \cdot 10^4$	$8.0 \cdot 10^{3}$	2.7	3.2	0.03	0.04
Doosted	PU80+SK+Trim	290	$3.7 \cdot 10^4$	$1.2 \cdot 10^4$	1.5	2.7	0.01	0.02
	no PU	130	$3.1 \cdot 10^{3}$	$1.5 \cdot 10^{3}$	2.3	3.3	0.04	0.08
	PU80+SK+Trim	140	$5.6 \cdot 10^{3}$	$2.4 \cdot 10^{3}$	1.9	2.9	0.03	0.06
Received	no PU	630	$1.1 \cdot 10^5$	$5.8 \cdot 10^4$	1.9	2.7	0.01	0.01
Resolved	PU80+SK	640	$1.0 \cdot 10^5$	$7.0 \cdot 10^4$	2.0	2.6	0.01	0.01
Combined	no PU				4.0	5.3		
Combined	PU80+SK+Trim				3.1	4.7		

CONCLUSIONS

$HH ightarrow (b \overline{b}) (b \overline{b})$ is a **tough** process to measure, however

- Multiple topologies
- With a combined arms strategy: > Substructure
 - ► Multivariate-analysis

An observation of HH production in the bbbb channel is feasible at the HL-LHC Combined $~S/\sqrt{B}\sim 3.1$ after MVA

Directions for potential improvements:

- b-tagging efficiency/purity
- ► Jet mass resolution

Next step - what bounds can we obtain upon λ ?

Thank you for listening!

ANALYSIS BREAKDOWN - NO PILEUP

.

	HL-LHC, Resolved category, no PU												
			Cross-se	$S_{/}$	B	S/\sqrt{B}							
	hh4b	total bkg	4b	2b2j	4j	$t\overline{t}$	tot	4b	tot	4b			
C1a	9	$2.2 \cdot 10^{8}$	$6.9 \cdot 10^{4}$	$1.5\cdot 10^7$	$2.0\cdot 10^8$	$2.1\cdot 10^5$	$4.0 \cdot 10^{-8}$	$1.3 \cdot 10^{-4}$	0.03	1.9			
C1b	9	$2.2\cdot 10^8$	$6.9\cdot 10^4$	$1.5\cdot 10^7$	$2.0\cdot 10^8$	$2.1\cdot 10^5$	$4.0 \cdot 10^{-8}$	$1.3 \cdot 10^{-4}$	0.03	1.9			
C1c	2.6	$4.4\cdot 10^7$	$1.6 \cdot 10^{4}$	$3.2\cdot 10^6$	$4.1\cdot 10^7$	$8.8\cdot 10^4$	$6.1 \cdot 10^{-8}$	$1.6 \cdot 10^{-4}$	0.02	1.1			
C2	0.5	$4.9\cdot 10^3$	$1.7 \cdot 10^{3}$	$2.9\cdot 10^3$	$2.1\cdot 10^2$	47	$1.1 \cdot 10^{-4}$	$2.9\cdot10^{-4}$	0.4	0.6			

	HL-LHC, Intermediate category, no PU											
			Cross-se	ection [fb]			$S_{/}$	B	S/\sqrt{B}			
	hh4b	total bkg	4b	2b2j	4j	$t\bar{t}$	tot	4b	tot	4b		
C1a	2.8	$8.4\cdot 10^7$	$2.1 \cdot 10^4$	$5.3\cdot 10^6$	$7.9\cdot 10^7$	$3.3\cdot 10^4$	$3.4 \cdot 10^{-8}$	$1.3 \cdot 10^{-4}$	0.02	1.1		
C1b	2.6	$5.8\cdot 10^7$	$1.4 \cdot 10^{4}$	$3.6\cdot 10^6$	$5.5\cdot 10^7$	$3.0\cdot 10^4$	$4.5 \cdot 10^{-8}$	$1.9 \cdot 10^{-4}$	0.02	1.2		
C1c	0.5	$3.5\cdot 10^6$	$8.7 \cdot 10^{2}$	$2.1\cdot 10^5$	$4.3\cdot 10^7$	$8.8\cdot 10^3$	$1.6 \cdot 10^{-7}$	$6.1 \cdot 10^{-4}$	0.02	1.0		
C2	0.09	$1.8\cdot 10^2$	56	96	22	3.1	$5.3 \cdot 10^{-4}$	$1.6 \cdot 10^{-3}$	0.4	0.6		

	HL-LHC, Boosted category, no PU											
			Cross-se		B	S/\sqrt{B}						
	hh4b	total bkg	4b	2b2j	4j	$t \overline{t}$	tot	4b	tot	4b		
C1a	3.9	$4.6\cdot 10^7$	$1.1 \cdot 10^{4}$	$2.9\cdot 10^6$	$4.3\cdot 10^7$	$2.4 \cdot 10^4$	$8.2 \cdot 10^{-8}$	$3.4 \cdot 10^{-4}$	0.03	2.0		
C1b	2.7	$3.7\cdot 10^7$	$7.5 \cdot 10^{3}$	$2.1\cdot 10^6$	$3.5\cdot 10^7$	$2.2\cdot 10^4$	$7.4 \cdot 10^{-8}$	$3.7 \cdot 10^{-4}$	0.03	1.7		
C1c	1.0	$3.9\cdot 10^6$	$8.0 \cdot 10^{2}$	$2.3\cdot 10^5$	$3.7\cdot 10^6$	$7.1\cdot 10^3$	$2.6 \cdot 10^{-7}$	$1.3 \cdot 10^{-3}$	0.03	2.0		
C2	0.16	$2.5\cdot 10^2$	53	$1.9\cdot 10^2$	13	1.6	$5.7 \cdot 10^{-4}$	$2.7 \cdot 10^{-3}$	0.5	1.1		

ANALYSIS BREAKDOWN – INCLUDING PILEUP

	HL-LHC, Resolved category, PU+SK with $n_{\rm PU} = 80$												
			Cross-se	S_{\prime}	S/	\overline{B}							
	hh4b	total bkg	4b	2b2j	4j	$t\bar{t}$	tot	4b	tot	4b			
C1a	11	$4.4 \cdot 10^{8}$	$1.5 \cdot 10^{5}$	$3.0\cdot 10^7$	$4.1 \cdot 10^{8}$	$2.6\cdot 10^5$	$2.4 \cdot 10^{-8}$	$7.2 \cdot 10^{-5}$	0.03	1.5			
C1b	11	$4.4\cdot 10^8$	$1.5 \cdot 10^5$	$3.0\cdot 10^7$	$4.1 \cdot 10^8$	$2.6\cdot 10^5$	$2.4 \cdot 10^{-8}$	$7.2 \cdot 10^{-5}$	0.03	1.5			
C1c	3	$1.1\cdot 10^8$	$4.2 \cdot 10^4$	$7.7\cdot 10^6$	$9.9\cdot 10^7$	$1.1\cdot 10^5$	$2.8 \cdot 10^{-8}$	$7.4 \cdot 10^{-5}$	0.02	0.8			
C2	0.6	$9.0\cdot 10^3$	$3.5 \cdot 10^3$	$5.1\cdot 10^3$	$3.1\cdot 10^2$	50	$6.5 \cdot 10^{-5}$	$1.7 \cdot 10^{-4}$	0.4	0.5			

	HL-LHC, Intermediate category, $PU+SK+Trim$ with $n_{PU} = 80$												
			Cross-s	S_{\prime}	S/\sqrt{B}								
	hh4b	total bkg	4b	2b2j	4j	$tar{t}$	tot	4b	tot	4b			
C1b	2.7	$8.1 \cdot 10^7$	$2.1 \cdot 10^{4}$	$5.2\cdot 10^6$	$7.6\cdot 10^7$	$3.0\cdot 10^4$	$3.4 \cdot 10^{-8}$	$1.3 \cdot 10^{-4}$	0.02	1.0			
C1c	2.6	$6.2\cdot 10^7$	$1.5\cdot 10^4$	$3.9\cdot 10^6$	$5.8\cdot 10^7$	$2.8\cdot 10^4$	$4.1 \cdot 10^{-8}$	$1.7 \cdot 10^{-4}$	0.02	1.1			
C1d	0.5	$2.8\cdot 10^6$	$7.9\cdot 10^2$	$1.9\cdot 10^5$	$2.7\cdot 10^6$	$6.5\cdot 10^3$	$1.8 \cdot 10^{-7}$	$6.2 \cdot 10^{-4}$	0.02	1.0			
C2	0.09	$2.6\cdot 10^2$	47	$1.8\cdot 10^2$	30	2.2	$3.4 \cdot 10^{-4}$	$1.8 \cdot 10^{-3}$	0.3	0.7			

	HL-LHC, Boosted category, PU+SK+Trim with $n_{\rm PU} = 80$												
			Cross-se	$S_{/}$	S/\sqrt{B}								
	hh4b	total bkg	4b	$t\bar{t}$	tot	4b	tot	4b					
C1a	3.5	$4.1 \cdot 10^{7}$	$1.0 \cdot 10^4$	$2.7\cdot 10^6$	$3.8\cdot 10^7$	$2.0 \cdot 10^{4}$	$8.6 \cdot 10^{-8}$	$3.4 \cdot 10^{-4}$	0.03	1.9			
C1b	2.5	$3.2\cdot 10^7$	$6.8\cdot 10^3$	$1.9\cdot 10^6$	$3.0\cdot 10^7$	$1.9\cdot 10^4$	$7.8 \cdot 10^{-8}$	$3.6 \cdot 10^{-4}$	0.02	1.6			
C1c	0.8	$2.2\cdot 10^6$	$5.4 \cdot 10^{2}$	$1.4 \cdot 10^5$	$2.0\cdot 10^6$	$4.8\cdot 10^3$	$3.8 \cdot 10^{-7}$	$1.6 \cdot 10^{-3}$	0.03	2.0			
C2	0.14	$1.5\cdot 10^2$	40	86	22	1.8	$9.0 \cdot 10^{-4}$	$3.5 \cdot 10^{-3}$	0.6	1.2			