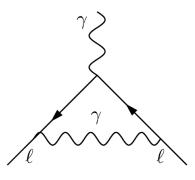

Low-energy hadronic cross sections measurements at BABAR, and implication for the g-2 of the muon

Denis Bernard

Laboratoire Leprince-Ringuet, Ecole polytechnique & IN2P3/CNRS, Palaiseau, France On behalf of the BABAR Collaboration

> DIS2016, 24th workshop on Deep-Inelastic Scattering and Related Subjects. 11-15 April 2016, DESY Hamburg


The "Anomalous" Magnetic Moment of the Lepton

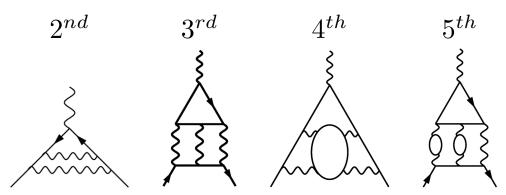
ullet Gyromagnetic factor g

$$\vec{\mu}=grac{e}{2m}\vec{s}$$
,

$$a = (g-2)/2$$

- (1928) Pointlike Dirac particles: g = 2, a = 0.
 - $g \neq 2$ due to higher order contributions:

- (1947) Nafe measure
- (1948) Schwinger (1st order in α)

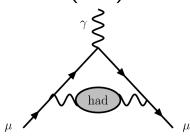

$$a_e = (2.6 \pm 0.5) \times 10^{-3}$$

$$a^{(1)} = \alpha/2\pi \approx 1.2 \times 10^{-3}$$

- With Tomonaga's completion of renormalized calculation of Lamb shift,
 - The first basis of our belief in QED and in the gauge-theory-based SM

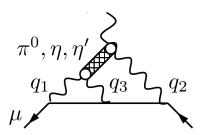
Higher Orders

One graph of each order given as example out of many:

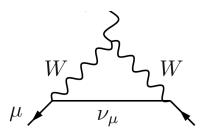


Full QED 5^{th} -order (in α) calculation

Aoyama Phys. Rev. Lett. 109 (2012) 111808


$$a = a^{\text{QED}} + a^{\text{had}} + a^{\text{weak}}$$

Hadronic Vacuum Polarisation (VP)



This talk

Hadronic light-by-light Scattering

Weak Interactions

$$a_e,~lpha~~and~a_{\mu}$$

ullet Heavy-to-Light and Light-to-Heavy mass ratios take part differently (e/ μ) in the loops (QED, QCD, weak)

$$a_{e} = \frac{\alpha}{2\pi} - 0.3 \left(\frac{\alpha}{\pi}\right)^{2} + 1.2 \left(\frac{\alpha}{\pi}\right)^{3} - 1.9 \left(\frac{\alpha}{\pi}\right)^{4} + 9.2 \left(\frac{\alpha}{\pi}\right)^{5} + 1.7 \cdot 10^{-12} (\text{QCD} + \text{weak})$$

$$a_{\mu} = \frac{\alpha}{2\pi} + 0.8 \left(\frac{\alpha}{\pi}\right)^{2} + 24. \left(\frac{\alpha}{\pi}\right)^{3} + 131. \left(\frac{\alpha}{\pi}\right)^{4} + 753. \left(\frac{\alpha}{\pi}\right)^{5} + 7.1 \cdot 10^{-8} (\text{QCD} + \text{weak})$$

(Numbers truncated on this slide)

Corrected after the talk: Andrei Kataev wrote: I [..] found out that in the expression for a_{mu} in the $O(\alpha^4)$ term, -131 should be changed to +131

α from	$a_{\mu}^{QED} (10^{-10})$
a_e	$11\ 658\ 471.885\ \pm\ 0.004$

Rubidium Rydberg constant

 $11\ 658\ 471.895\ \pm\ 0.008$

PDG Aug. 2014.

Aoyama Phys. Rev. Lett. 109 (2012) 111808

Theoretical prediction for a_{μ}

• SM-to-experiment comparison [units 10^{-10}]

QED	11 658 471.895	$\pm~0.008$
Leading hadronic vacuum polarization (VP)	692.3	\pm 4.2
Sub-leading hadronic vacuum polarization	-9.8	\pm 0.1
Hadronic light-by-light	10.5	$\pm~2.6$
Weak (incl. 2-loops)	15.4	\pm 0.1
Theory	11 659 180.3	\pm 4.2 \pm 2.6
Experiment [E821 @ BNL]	11 659 209.1	\pm 5.4 \pm 3.3
Exp. — theory	+28.8	± 8.0

- Exp. updated from E821 @ BNL, Bennett Phys. Rev.D73 (2006) 072003 to the newest value of the μ/p magnetic ratio Rev. Mod. Phys. 84 (2012) 1527.
- Assuming Gaussian statistics, a 3.6 σ discrepancy.

PDG Aug. 2014

uses e^+e^- input only for VP

Theoretical prediction: The Hadronic VP (1)

$$\begin{array}{c}
\gamma \\
\text{had}
\end{array} \Leftrightarrow \left| \begin{array}{c}
\gamma \\
\text{had} \end{array} \right|^2$$

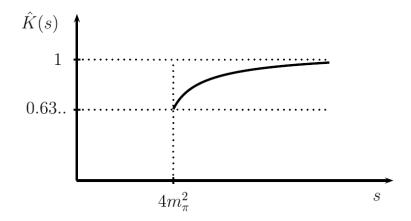
- Quark loops not computable from first principles QCD.
- Vacuum polarization: energy dependent running charge:

$$e^2 \to e^2/[1 + (\Pi'(k^2) - \Pi'(0))]$$

Dispersion relation from analyticity

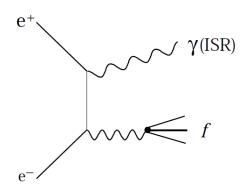
$$\Pi'(k^2) - \Pi'(0) = \frac{k^2}{\pi} \int_0^\infty \frac{Im\Pi'(s)}{s(s - k^2 - i\epsilon)} ds$$

Optical theorem (unitarity):


$$Im\Pi'(s) = \frac{\alpha(s)R_{\mathrm{had}}(s)}{3}$$
,

$$R_{\rm had}(s) = \frac{\sigma_{e^+e^- \to hadrons}}{\sigma_0}$$
, σ_0 pointlike muon-pair cross section.

Theoretical prediction: The Hadronic VP (2)


Wrapping it up, the "dispersion integral":

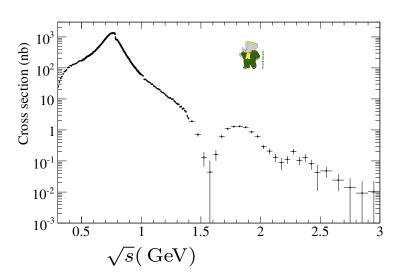
$$a_{\mu}^{\mathrm{had}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int \frac{R_{\mathrm{had}}(s) \times \hat{K}(s)}{s^2} \mathrm{d}s$$

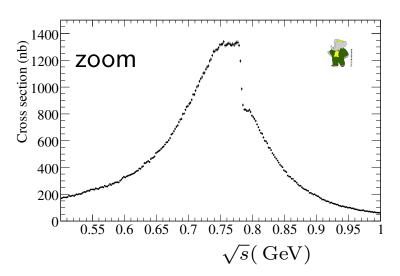
- Technically, $\int_{4m^2}^{E_{cut}^2}$ is obtained from the data, $\int_{E^2}^{\infty}$ from pQCD.
- The estimation of the contribution with the largest uncertainty to a_{μ} (theory) boils down to a precise measurement of $R_{\rm had}(s)$
- Most precision on $R_{\rm had}(s)$ needed at low \sqrt{s} (currently $E_{cut}=1.8\,{\rm GeV}$)

Initial State Radiation (ISR)

- Optimal use of the available luminosity
- Covers whole energy range with same detector condition and analysis.
- Asymmetric e^+e^- collider \Rightarrow good efficiency down to threshold
- ullet If the whole final state (γ + hadrons) is observed \Rightarrow over-constrained kinematical fit \Rightarrow powerful background noise rejection.

$$\frac{\mathrm{d}\sigma_{[e^+e^-\to f\gamma]}}{\mathrm{d}s'}(s') = \frac{2m}{s}W(s,x)\sigma_{[e^+e^-\to f]}(s') , \qquad x = \frac{E_\gamma}{\sqrt{s}} = 1 - \frac{s'}{s}$$


ullet W(s,x) "radiator function", density of probability to radiate a photon with energy $E_{\gamma} = x\sqrt{s}$: a known function Binner, Physics Letters B 459 (1999) 279


$$e^+e^- \to \pi^+\pi^-(\gamma)\gamma$$

- Systematics mastered at the 10^{-3} level for the first time, to my knowledge, in BaBar
- ISR γ in EMC (thus: at large angle)
- Good quality tracks, particle identification (PID)
- Kinematic fit (using only direction of ISR γ)
 - possibly including 1 additional γ : NLO!
- All efficiencies (trigger, filter, tracking, PID, fit) from data: $\pi\pi/\mu\mu$ cross section ratio:
 - \Rightarrow Cancellation of ee luminosity, additional ISR, VP, ISR γ efficiency
- Correct for lowest order FSR in $\mu\mu$ and for ISR + additional FSR, both calc. in QED, and checked in data

$$R_{\exp}(s') = \frac{\sigma_{[\pi\pi\gamma(\gamma)]}(s')}{\sigma_{[\mu\mu\gamma(\gamma)]}(s')} = \frac{\sigma_{[\pi\pi(\gamma)]}^{0}(s')}{(1 + \delta_{FSR}^{\mu\mu})\sigma_{[\mu\mu(\gamma)]}^{0}(s')} = \frac{R(s')}{(1 + \delta_{FSR}^{\mu\mu})(1 + \delta_{add,FSR}^{\mu\mu})}$$

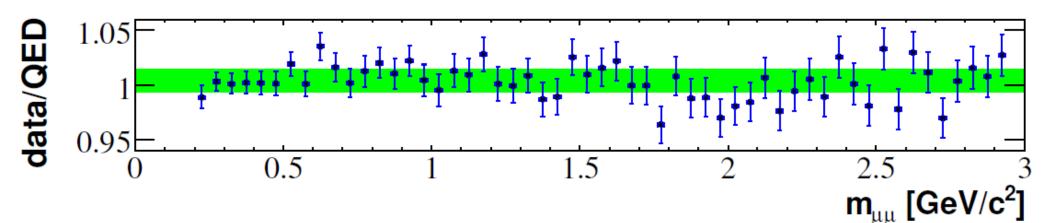
$e^+e^- \to \pi^+\pi^-(\gamma) \ Cross \ Section$

Bare (incl. additional FSR, VP removed), unfolded $\sigma_{e^+e^-\to\pi^+\pi^-}$ 232 fb⁻¹ @ $\sqrt{s}\approx 10.6\,\mathrm{GeV}$

$$232\,{\rm fb}^{-1}$$
 @ $\sqrt{s}\approx 10.6\,{\rm GeV}$

Excellent precision down to threshold!

$$a_{\mu}^{\pi^{+}\pi^{-}}[2m_{\pi}, 1.8 \,\text{GeV}] = (514.1 \pm 2.2 \pm 3.1) \times 10^{-10}$$

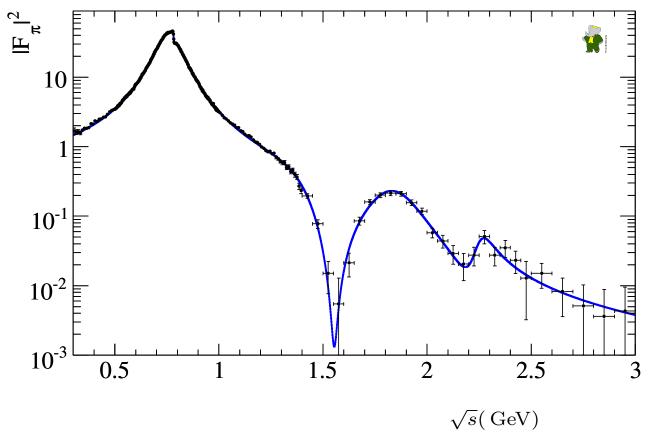

Similar precision as combination of previous e^+e^- results.

$$a_{\mu}^{\pi^{+}\pi^{-}}[2m_{\pi}, 1.8 \,\text{GeV}] = (503.5 \pm 4.5) \times 10^{-10}$$

1.7 σ larger than previous e^+e^- average, $\Delta=+(10.6\pm5.9)\times10^{-10}$

Phys. Rev. Lett. 103 (2009) 231801, Phys. Rev. D86 (2012) 032013

BaBar: Sanity check: Comparison of the $\mu\mu$ spectrum with QED



- Here the radiator function and the collider integrated luminosity are needed.
- MC simulation corrected for all known MC/data differences.
 - e.g.: ISR γ efficiency measured in data, from $\mu\mu$ -only reco'ed evts.
 - MC corrected for known NLO deficiencies by comparing to PHOKHARA

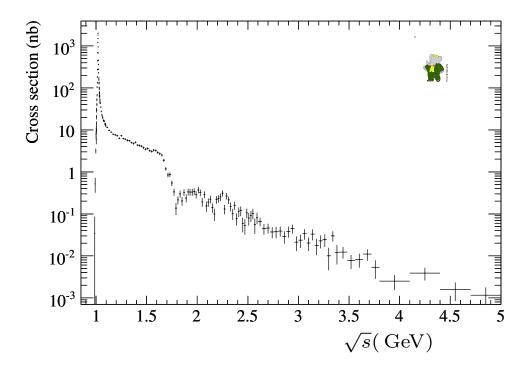
Good agreement within $0.4 \pm 1.1\%$; dominated by $\mathcal{L}_{e^+e^-}$ ($\pm 0.9\%$)

Phys. Rev. Lett. 103 (2009) 231801, Phys. Rev. D86 (2012) 032013

$$e^+e^- \to \pi^+\pi^-(\gamma)$$
: VDM Fit of $|F_{\pi}(s)|^2$

- $|\text{Form Factor}|^2$ fitted with a vector dominance model, $\rho, \rho', \rho'', \omega$.
- ullet ho's described by the Gounaris-Sakurai model

$$\chi^2/n_{df} = 334/323$$

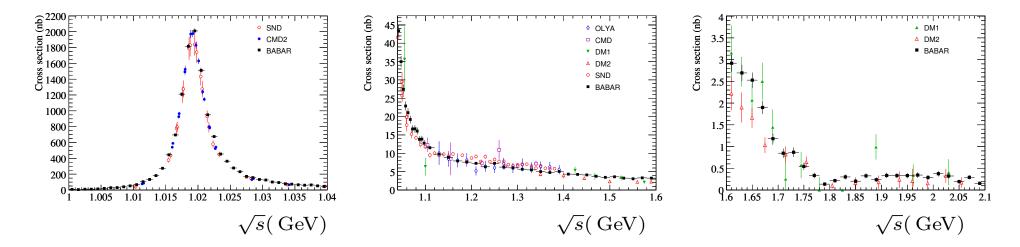

Phys. Rev. Lett. 103 (2009) 231801,

Phys. Rev. D86 (2012) 032013

12

$$e^+e^- \to K^+K^-(\gamma)$$
 Cross Section

- Same method, as for $\pi^+\pi^-$:
 - NLO ISR, data sample, evt generators ...
 - Data driven, step-by-step evaluation of $\epsilon^{data}/\epsilon^{MC}$
 - Resolution unfolding (almost no FSR for kaons) Malaescu arXiv:0907.3791

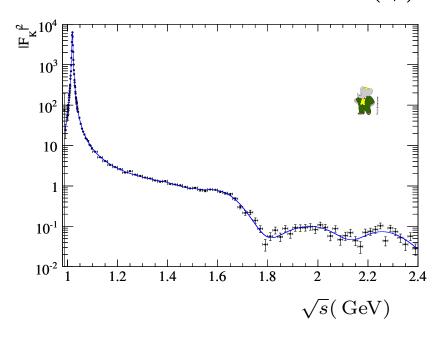


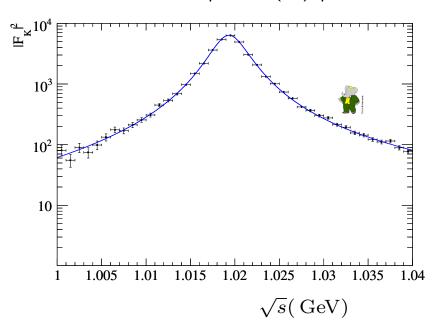
 $e^+e^- \to K^+\!K^-(\gamma)$ bare cross section (including FSR), J/ψ and $\psi(2S)$ removed.

Phys. Rev. D88 (2013) 032013

$$e^+e^- \to K^+K^-(\gamma)\gamma$$

Zooms and comparisons with previous (direct measurements) results.




- ullet Unprecedented precision in the ϕ region [1.01 1.03] GeV, of $7.3 imes 10^{-3}$.
- Dispersion integral:

$$a_{\mu}^{KK} \ (\sqrt{s} < 1.8 \, \mathrm{GeV}) \qquad \boxed{ (22.93 \pm 0.18_{\mathrm{stat}} \pm 0.22_{\mathrm{syst}} \pm 0.03_{\mathrm{VP}}) \, 10^{-10} } \qquad \qquad \text{PRD 88 (2013) 032013}$$
 Previous combination
$$(21.63 \pm 0.27_{\mathrm{stat}} \pm 0.68_{\mathrm{syst}}) \, 10^{-10} \qquad \qquad \text{EPJ C 71 (2011) 1515}$$

$$\Delta \qquad \qquad + (1.30 \pm 0.79) 10^{-10} \qquad \qquad \text{a 1.6 σ difference}$$

Precision better than combination of previous results by a factor 2.7

$e^+e^- \to K^+K^-(\gamma)$: VDM Fit of $|F_K(s)|^2$

• $F_K = \hat{\phi}/3 + \hat{\rho}/2 + \hat{\omega}/6$, with:

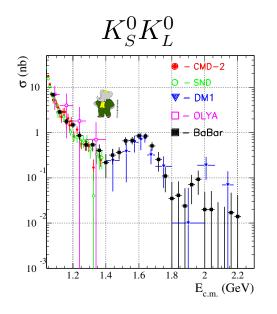
$$\hat{\phi} = \sum_{i=\phi}^{\phi''} a_i BW_i, \quad \hat{\rho} = \sum_{i=\rho}^{\rho'''} a_i BW_i, \quad \hat{\omega} = \sum_{i=\omega}^{\omega'''} a_i BW_i \quad \text{and}$$

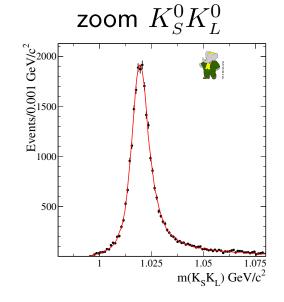
$$\sum_{i=\phi}^{\phi''} a_i = 1, \qquad \sum_{i=\rho}^{\rho'''} a_i = 1, \qquad \sum_{i=\omega}^{\omega'''} a_i = 1.$$

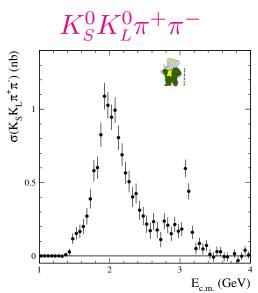
Phys. Rev. D88 (2013) 032013

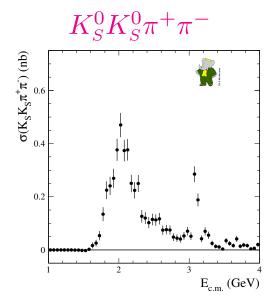
15

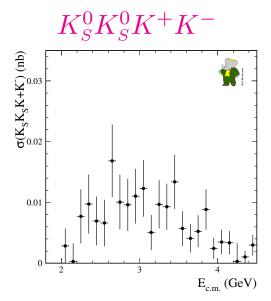
ISR: Recent LO Measurements @ BaBar


- LO: hadronic final state, ISR γ either detected $(E_{\gamma}^* > 3 \text{ GeV})$, or undetected.
- ISR luminosity computed from MC

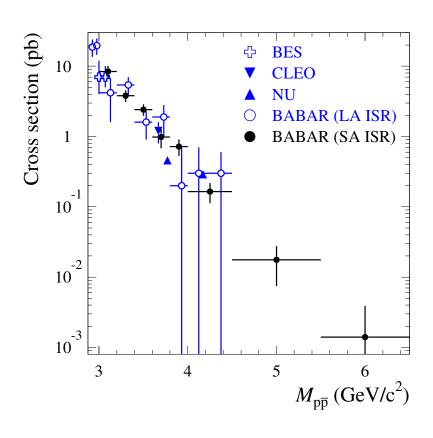

	\mathcal{L}_{q}	\sqrt{s}_{\min}	\sqrt{s}_{\max}	
	fb^{-1}	$\overline{\text{GeV}}$	$\overline{\text{GeV}}$	
$\overline{K^0_S K^0_L}$	469		2.3	Phys. Rev. D 89, 092002 (2014)
$K_S^{ar{0}} K_L^{ar{0}} \pi^+ \pi^-$			4.0	
$K_S^{ ilde{0}}K_S^{ ilde{0}}\pi^+\pi^-$			4.0	
$K_{S}^{0}K_{S}^{0}K^{+}K^{-}$			4.5	
$\overline{p}p$	454		4.5	Phys. Rev. D87 (2013) 092005
$ar{p}p$	469	3.0	6.5	Phys. Rev. D. 88 (2013) 072009
K^+K^-	469	2.6	8.0	Phys. Rev. D 92, 072008 (2015)
$K_S^0 K^+ \pi^- \pi^0 \ K_S^0 K^+ \pi^- \eta$	454		4.0	Preliminary
$K^0_S K^+ \pi^- \eta$				


Blue: photon undetected


Magenta: First measurements


Channels with 2 neutral kaons

Phys. Rev. D 89, 092002 (2014)


Magenta: First measurements

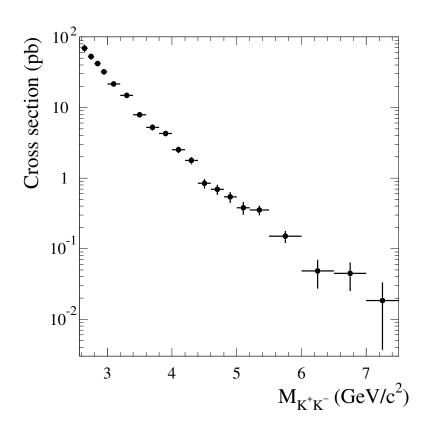
$e^+e^- \to \overline{p}p \ measurements$

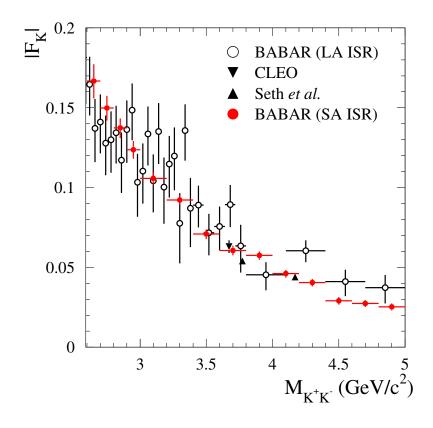
γ detected

© BABAR ○ FENICE □ DM2 △ DM1 ☆ ADONE73 ♣ BES ▼ CLEO ▲ NU 10 -1 2 3 4 M_{pp} (GeV/c²)

γ undetected

Phys. Rev. D87 (2013) 092005

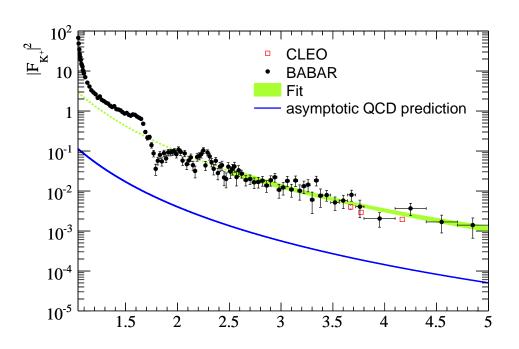

Phys. Rev. D. 88 (2013) 072009


Supersedes our Phys. Rev. D73 (2006) 012005

These $\overline{p}p$ data are not used for a_{μ}

18

$e^+e^- \to K^+K^-, \ \gamma \ undetected$

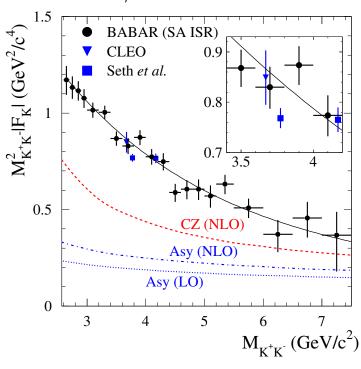


 $469\,\mathrm{fb}^{-1}$

Phys. Rev. D 92, 072008 (2015)

$e^+e^- \to K^+K^-$, comparison with QCD

γ detected

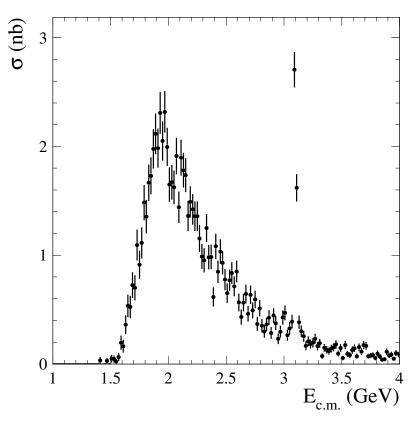


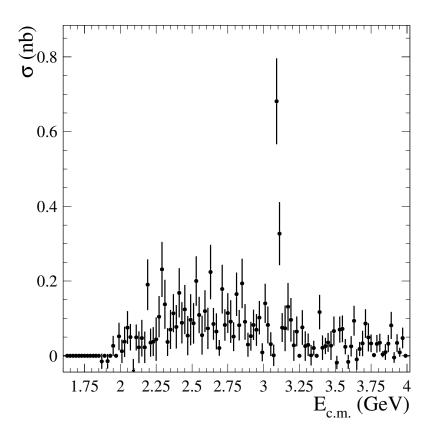
Blue: Chernyak-Zhitnitsky NLO pQCD

Phys. Rev. D88 (2013) 032013

pQCD fails to describe the data.

γ undetected


- Black: fit to BaBar data
- Red: Chernyak-Zhitnitsky NLO pQCD
- pQCD with asymptotic kaon distribution amplitude.

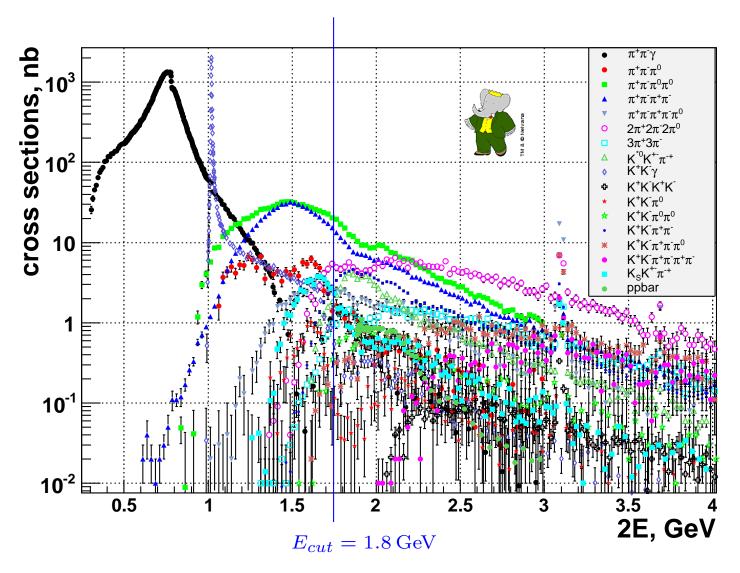

Phys. Rev. D 92, 072008 (2015)

Getting better at higher mass?

20

$$e^+e^- \to K_S^0 K^+ \pi^- h^0$$

$$K_S^0K^+\pi^-\pi^0$$


 $K_S^0K^+\pi^-\eta$

 $454\,\mathrm{fb}^{-1}$

charmonia not (yet) removed

Preliminary, publication in preparation

BaBar ISR measurements: Summary Plot

BaBar Oct 2013

Thanks Fedor V. Ignatov

The $\pi^+\pi^-\pi^0\pi^0$ entry is preliminary arXiv:0710.3455

BaBar ISR measurements: present situation

A vigorous campaign that is almost completed

@ 10.6 GeV

- radiation: LO: $e^+e^- \to X\gamma$ or NLO: $e^+e^- \to X\gamma(\gamma)$
- ullet γ detected (lower X mass), or γ undetected (higher X mass)
- ullet For most channels, precision improvement by a factor of pprox 3 -wrt previous averages

$K_S^0 K^+ \pi^- \pi^0$, $K_S^0 K^+ \pi^- \eta$		Preliminary
K^+K^-	γ undet.	Phys. Rev. D 92, 072008 (2015)
$K^0_S K^0_L$, $K^0_S K^0_L \pi^+ \pi^-$, $K^0_S K^0_S \pi^+ \pi^-$, $K^0_S K^0_S K^+ K^-$		Phys. Rev. D 89, 092002 (2014)
$\overline{p}p$	γ undet.	Phys.Rev. D88 (2013) 7, 072009
$\overline{p}p$		Phys. Rev. D87 (2013) 092005
K^+K^-	NLO	Phys. Rev. D88 (2013) 032013
$\pi^+\pi^-$	NLO	Phys. Rev. Lett. 103 (2009) 231801
		Phys. Rev. D86 (2012) 032013
$2(\pi^{+}\pi^{-})$		Phys. Rev. D85 (2012) 112009
$K^{+}K^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{0}\pi^{0}$, $K^{+}K^{-}K^{+}K^{-}$		Phys. Rev. D86 (2012) 012008
$K^{+}K^{-}\eta$, $K^{+}K^{-}\pi^{0}$, $K^{0}K^{\pm}\pi^{\mp}$		Phys. Rev.D77 (2008) 092002
$2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)\eta, K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-\eta$		Phys. Rev.D76 (2007) 092005
$K^{+}K^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{0}\pi^{0}$, $K^{+}K^{-}K^{+}K^{-}$		Phys. Rev.D76 (2007) 012008
$\Lambda \overline{\Lambda}$, $\Lambda \Sigma^0$, $\Sigma^0 \Sigma^0$		Phys. Rev. D76 (2007) 092006
$3(\pi^{+}\pi^{-}), 2(\pi^{+}\pi^{-}\pi^{0}), K^{+}K^{-}2(\pi^{+}\pi^{-})$		Phys. Rev.D73 (2006) 052003
$\overline{p}p$		Phys. Rev.D73 (2006) 012005
$2(\pi^{+}\pi^{-})$, $K^{+}K^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}K^{+}K^{-}$		Phys. Rev.D71 (2005) 052001
$\pi^{+}\pi^{-}\pi^{0}$		Phys. Rev.D70 (2004) 072004

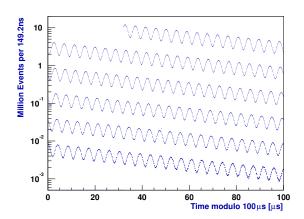
Magenta: First measurements, Orange: superseded, Green: 454 - 469 fb⁻¹, Cyan: 232 fb⁻¹, Blue: 89 fb⁻¹

Exp - Theory Comparison $(a_{\mu} \ units \ 10^{-10})$

3.4
$$\sigma$$
3.2 σ
-28.5 + 5.1 \longrightarrow
-29.9 + 6.5 \longrightarrow
-31.2 + 5.1 \longrightarrow
-15.7 + 5.2 \longrightarrow
-25.5 + 4.9 \longrightarrow
-25.5 + 4.9 \longrightarrow
-28.7 + 4.9 \longrightarrow
-19.5 + 5.4 \longrightarrow
-26.1 + 4.9 \longrightarrow
-26.1 + 4.9 \longrightarrow
-28.3 + 6.0 \longrightarrow
-32.7 + 5.2 \longrightarrow
-33.9 σ
-32.7 + 5.2 \longrightarrow
-33.9 σ
-33.9 σ
-33.9 σ
-33.0 σ
-34.0 σ
-35.0 σ
-35.0 σ
-37.0 σ

- (6) Solves e^+e^- au discrepancy after correcting au for ho γ mixing Jegerlehner, EPJ. C71 (2011) 1632
- (7)• Includes BaBar ISR data [2012 2014], BESIII ISR $\pi^+\pi^-$, CDM-3 $3(\pi^+\pi^-)$, SND $\omega\pi^0$
 - pQCD range restricted to $[4.5-9.3]\,\text{GeV}$ and $[13\,\text{GeV}-\infty[.$ Rest from data.
 - Light-by-light update;
 - Addition of NNLO hadronic VP contribution.

Conclusion


- BaBar ISR programme well advanced.
 - Most precise $\sigma(e^+e^- \to \text{had})$, from threshold to $E_{\text{cut}} = 1.8 \,\text{GeV}$ (and above)
- a_{μ} : SM prediction uncertainty $\approx 5.2 \times 10^{-10}$, $a_{\mu}^{\rm had,LO}$ and $a_{\mu}^{\rm l-by-l}$ dominated $\approx 6.3 \times 10^{-10}$
- Study of $\rho-\gamma$ mixing solves former discrepancy between e^+e^- and τ -based $a_\mu^{\pi^+\pi^-,LO}$ Jegerlehner Eur.Phys.J. C71 (2011) 1632
- Experiment-to-SM discrepancy still at 3 4 σ
- New measurements of a_{μ} are eagerly awaited:
 - Fermilab Nucl.Phys.Proc.Suppl. 225-227 (2012) 277-281 and
 - J-PARC Nucl.Phys.Proc.Suppl. 218 (2011) 242-246

Back-up slides

a_{μ} Measurement E821 @ BNL

- $\pi \to \mu \nu$ violates P, μ longitudinally polarized.
- μ 's at "magic momentum" [$\approx 3.1 \, {\rm GeV}/c$], in a storage ring with constant \vec{B} .
 - ullet μ rotating with freq ω_c ; μ spin precessing with freq ω_s
 - freq. difference $\omega_a = \omega_s \omega_c = a_\mu e B/m_\mu$
- $\mu \to e \nu \overline{\nu}$ violates P, e direction (energy in lab) remembers μ polarization. \Rightarrow Fraction of detected e above a $E_{\rm threshold}$ is modulated with freq. ω_a

$$a_{\mu}(\mathrm{expt}) = (11659208.0 \pm 5.4(\mathrm{stat}) \pm 3.3(\mathrm{syst})) \times 10^{-10}$$
 (0.54 ppm)

E821 @ BNL,

$$\mu^+ - \mu^-$$
 charge average

Bennett Phys. Rev.D73 (2006) 072003

a_{μ} measurement: the magic γ

• In a storage ring, uniform \vec{B} :

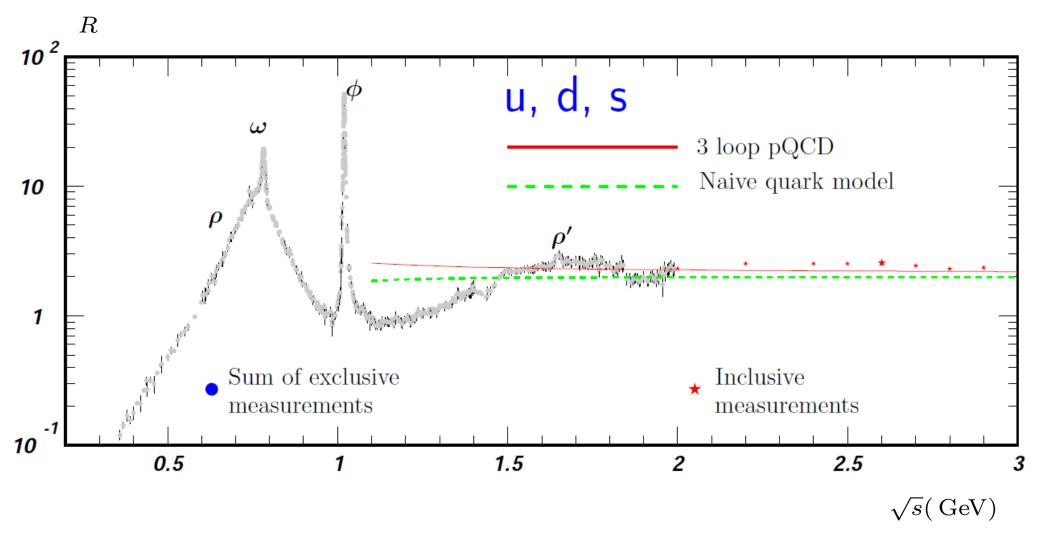
Cyclotron frequency
$$\omega_c = \frac{eB}{m_\mu \gamma},$$
 Spin precession frequency
$$\omega_s = \frac{eB}{m_\mu \gamma} + a_\mu \frac{eB}{m_\mu},$$

$$\omega_a = \omega_s - \omega_c$$

$$\omega_a = a_\mu \frac{eB}{m_\mu}$$

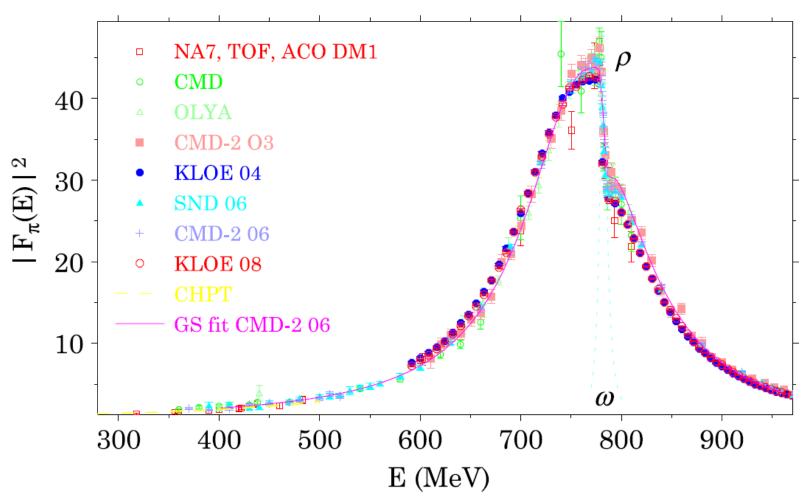
But need quadropole $ec{E}$ too, to prevent beam go_astray; ω_a becomes:

$$\vec{\omega_a} = \frac{e}{m_\mu} \left(a_\mu \vec{B} - \left[a_\mu - \frac{1}{\gamma^2 - 1} \right] \vec{v} \times \vec{E} \right)$$


Precise value of E not needed: ω_a independent of E for "magic" γ :

$$a_{\mu} - 1/(\gamma^2 - 1) = 0$$
,

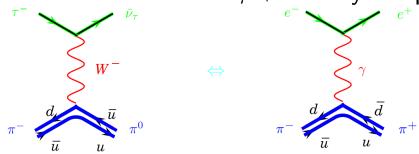
corresponds to $\approx 3.1\,\mathrm{GeV}$ muons.


Bargmann Phys. Rev. Lett. 2 (1959) 435

$R_{\rm had}(s)$: Direct Measurements $e^+e^- \to Hadrons$

PDG 2013

$e^+e^- \to \pi^+\pi^-$: Direct Measurements



- (KLOE 08 supersedes KLOE04)
- ullet The 3.2 σ discrepancy mentioned above is based on this input

Jegerlehner, Nyffeler / Phys Rept 477 (2009) 1110

τ Decay Spectral Functions

• I=1 part of $e^+e^- \to \mathrm{had}$ from $\tau \to \nu_{\tau} + \mathrm{had}$ by isospin rotation

$$\pi^0\pi^- \leftrightarrow \pi^+\pi^-, \quad \sigma(e^+e^- \to \pi^+\pi^-) = \frac{4\pi\alpha^2}{s}\nu_0(s), \quad \nu(s) \text{ "spectral function"}$$

- $\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}s} = F(s) \frac{\mathcal{B}(\tau \to e \nu_{\tau} \overline{\nu}_{e})}{\mathcal{B}(\tau \to \pi^{-} \pi^{0} \nu_{\tau})} \times \nu_{-}(s)$, where F(s) is a known function of s
- CVC: $\nu_0(s) = \nu_-(s)$, isospin breaking (IB) corrections · · ·

$$a_{\mu}^{\pi^{+}\pi^{-}}[2m_{\pi}, 1.8 \,\text{GeV}/c^{2}] \,(10^{-10})$$

ALEPH, CLEO, OPAL
$$520.1 \pm 2.4_{\mathrm{exp}} \pm 2.7_{\mathrm{Br.}} \pm 2.5_{\mathrm{IB}}$$
 Eur. Phys. J. C 27, 497 (2003).

Belle (72
$$\,\mathrm{fb}^{-1})$$

Belle (72 fb⁻¹)
$$523.5 \pm 1.5_{\rm exp} \pm 2.6_{\rm Br.} \pm 2.5_{\rm IB}$$

Fujikawa Phys. Rev. D78:072006,2008.

Hadron form factor, bare and dressed cross sections

A hadron h,

$$|F_h|^2(s') = rac{3s'}{\pi \alpha^2(0) eta_h^3} rac{\sigma_{\overline{h}h}(s')}{C_{\mathrm{FS}}} \; ,$$

$$\sigma_{\overline{h}h}(s') = \sigma_{\overline{h}h(\gamma)}^0(s') \left(rac{lpha(s')}{lpha(0)}
ight)^2$$

 F_h

hadron form factor

$$\sigma_{\overline{h}h}(s')$$

dressed cross section

$$e^+e^- o \overline{h}h$$

$$\sigma^0_{\overline{h}h(\gamma)}$$

bare cross section

$$e^+e^- o \overline{h}h$$

$$\beta_h = \sqrt{1 - 4m_h^2/s'}$$
 hadron velocity

$$C_{\mathrm{FS}} = 1 + rac{lpha}{\pi} \eta_h(s')$$

 $C_{\mathrm{FS}} = 1 + rac{lpha}{\pi} \eta_h(s')$ final-state correction (Coulomb \cdots