Exclusive Hard Processes with CLAS and Generalized Parton Distributions

Kyungseon Joo University of Connecticut

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

13-April, 2016

Generalized Parton Distributions and 3D Quark Imaging

Last 50 years

Last 40 years

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & spin distributions

Generalized Parton Distributions

The GPDs depend on three kinematic variables:

e.g. $F^q(x,\xi,t)$

 $x \leftarrow$

average parton momentum fraction

(skewness) difference between the initial and final fractions of the longitudinal momentum carried by the struck parton

 $\xi \simeq \frac{2x_B}{2-r_B}$

 $t = (p - p')^2$ momentum transfer

between initial and final nucleons

Deeply Virtual Exclusive Process

Deeply Virtual Compton Scattering (DVCS) Deeply Virtual Meson Production (DVMP)

Flavor Decomposition

Thomas Jefferson National Accelerator Facility (Jefferson Lab)

• Superconducting RF electron linacs with up to 5X recirculation

- CW (100% duty factor) operation
- Polarized source: up to 85% polarization
- Three experimental Halls
- Energy up to 6 GeV (upgrade will increase to 11(12) GeV to Halls A/B/C (D))

Site Aerial, June 2012

CEBAF Large Acceptance Spectrometer (CLAS) in Hall B

- Electromagnetic Calorimeter (EC) and Čerenkov Counter (CC) used in electron identification.
- Drift Chamber (DC) (3 regions) and time of flight Scintillators (SC) record position and timing information for each charged track.
- Torus magnet creates toroidal magnetic field which causes charged tracks to curve whilepreserving the φlab angle.

E1-DVCS and EG1-DVCS for DVCS and DVMP

Inner Calorimeter (IC)

- 424 PbWO₄ crystals, 16 cm long, 1.3x.13 cm²
- High resolution calorimeter to detect photons at small angles (4-15°).

Longitudinally polarized solid NH₃

- Dynamically Nuclear Polarization (DNP) with high polarizability (~80%)
- Resistant to radiation damage
- 5T holding field
- Carbon target

Deeply Virtual Compton Scattering

Unpolarized cross sections, unpolarized beam and target $\sigma_0 \sim \operatorname{Re}\{F_1 H - \frac{t}{4M^2}F_2 E - \xi^2 (F_1 + F_2)(H + E)\}$

> Polarized beam and Unpolarized target (BSA) $A_{LU} \sim \operatorname{Im}\left\{F(H) + \xi(F_1 + F_2)\tilde{H} + \frac{t}{4M^2}F_2E\right\}$

> > GPD

Unpolarized beam and Polarized target (TSA) $A_{UL} \sim \operatorname{Im}\left\{F\left(\tilde{H}\right) + \xi(F_1 + F_2)\left(H - \frac{x_B}{2}E\right) - \xi\left(\frac{x_B}{2}F_1 - \frac{t}{4M^2}F_2\right)\tilde{E}\right\}$

 $A_{LL} \sim \operatorname{Re}\left\{F_1\tilde{H} + \xi(F_1 + F_2)(H + \frac{x_B}{2}E)\right\}^{\gamma*} \lambda \hbar q q' \hbar \lambda'$

DVCS Unpolarized Cross Sections and Cross Section Differences

DVCS Beam Spin Asymmetries (A_{LU})

DVCS Target Spin Asymmetries (A_{UL})

Seder et. al Phys. Rev. Lett. 114, 032001 (2015), Pisano et al. Phys. Rev. D 91, 052014 (2015)

DVCS α_{LU} and α_{UL}

Seder et. al Phys. Rev. Lett. 114, 032001 (2015), Pisano et al. Phys. Rev. D 91, 052014 (2015)

Deeply Virtual Meson Production (DVMP)

$DV\pi^0P$ Beam Spin Asymmetries (A_{LU})

First round experiment at Hall B: E01-113

PRC77:042201 (2008), R. De Masi et al. (CLAS collaboration)

$DV\pi^0P$ Unpolarized Cross Sections (σ_0)

$DV\pi^0P$ Unpolarized Cross Sections (σ_0)

$DV\pi^0P$ Unpolarized Cross Sections (σ_0)

$DV\pi^0P$ Target and Double Spin Asymmetries (A_{UL} , A_{LL})

GPD Flavor Decomposition

$$egin{aligned} H^{\pi}_{T} &= rac{1}{3\sqrt{2}}[2H^{u}_{T} + H^{d}_{T}]\ H^{\eta}_{T} &= rac{1}{\sqrt{6}}[2H^{u}_{T} - H^{d}_{T}] \end{aligned}$$

$$H^u_T = rac{3}{2\sqrt{2}} [H^\pi_T + \sqrt{3} H^\eta_T] \ H^d_T = rac{3}{\sqrt{2}} [H^\pi_T - \sqrt{3} H^\eta_T]$$

Similar expressions for \overline{E}_{T}

- GPDs appear in different flavor combinations for π^0 and η
- The combined π^0 and η data permit the flavor (u and d) decomposition for GPDs H_T and E_T
- The u/d decomposition was done under simple assumption that the relative between u and d is 0 or 180 degrees.

π^0 and η Unpolarized Structure Functions

• $\sigma_{\rm U}$ - drops by a factor of 2.5 for η

- GK model (curves) follows the experimental data
- The statement about the transversity GPD dominance in the pseudoscalar electroproduction becomes more solid with inclusion of η data

η / π^0 Ratio

$$F_{i}^{\pi^{0}} = \frac{\left(e_{u}F_{i}^{u} - e_{d}F_{i}^{d}\right)}{\sqrt{2}}$$

$$F_{i}^{\eta} = \frac{\left(e_{u}F_{i}^{u} + e_{d}F_{i}^{d}\right)}{\sqrt{6}}$$

$$\frac{d\sigma(\eta)}{d\sigma(\pi^{0})} \simeq \left(\frac{f_{\eta}}{f_{\pi}}\right)^{2} \frac{1}{3} \left|\frac{2\langle F_{T}^{u}\rangle - \langle F_{T}^{d}\rangle}{2\langle F_{T}^{u}\rangle + \langle F_{T}^{d}\rangle}\right|^{2}$$

Chiral-odd GPD models predict this ratio to be ~1/3 at CLAS kinematics

Chiral-even GPD models predict this ratio to be around 1

Beam spin asymmetries: $\vec{e}p ightarrow e'p'\eta$ and $\vec{e}p ightarrow e'p'\pi^0$

JLab Upgrade to 12 GeV

Base equipment Forward Detector (FD)

- TORUS magnet (6 coils)
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Beamline

- Targets
- Moller polarimeter
- Photon Tagger

Upgrade to base equipment

- MicroMegas
- Central Neutron Detector
- Forward Tagger
- RICH detector (1 sector)
- Polarized target (long.)

Kinematics of deeply virtual exclusive processes

Summary

- Large data set (cross secions, single and double spin asymmetries) in a wide kinematic region is available.
- Large number of experimental observables provide better constraints for parameterizations of underlying GPDs.
- DVCS and DVMP provide access to the chiral-even and chiral-odd GPDs.
- Compelling GPD program in the future at JLab at 12 GeV.