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Motivation

Why TMDs?

Why Transverse Momentum Dependent PDFs?

Goal: full TMD PDFs
TDMs are important in studies on:

I resummation at all orders in the QCD coupling
to many observables in high-energy hadronic
collisions,

I nonperturbative information on hadron structure
at very low kT ,

I perturbative region where QCD evolution
equations (DGLAP, BFKL, CCFM) describe
processes

I a proper and consistent simulation of parton
showers,

I multi-scale problems in hadronic collisions,

I ...
Acta Physica Polonica B, Vol. 46 (2015), Transverse Momentum
Dependent (TMD) Parton Distribution Functions: Status and
Prospects

Important processes: Drell-Yan hadroproduction of
electroweak gauge bosons, Higgs production...

Example:
The Z-boson transverse momentum qT spectrum in pp
collisions at the LHC:

S. Chatrchyan et al., Phys. Rev. D 85, 032002 (2012)
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Quark and Gluon collinear and TMD parton distributions from HERA DIS data

Motivation

What is available at the market

Evolution using MC method:

In this presentation: MC results obtained with updated and improved uPDFevolv code :

old version:

I ccfm evolution,

I only gluon and valence quark evolution
(separately)

I all loop P(z),

I 1- or 2-loop-αs .

I f (x , t) ,

Evolution applicable only for small x , not very
high Q2 and all kinematically allowed kT .

new version:

I full coupled quark and gluon DGLAP
evolution (gluon, sea and valence evolution)

I fixed flavour number scheme (only u,d,s)

I LO in P(z) (we plan to have NLO in P(z)),

I 1-loop-αs (but also 2-loop-αs

implemented).

I xf (x , t) ,

Evolution over the whole range in x , Q2 and all
kinematically allowed kT .

https://updfevolv.hepforge.org/

Similar codes exist (use similar formalism):

evolution code EvolFMC by Cracow group
S. Jadach et al., Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations, Comput.Phys.Commun.
181 (2010) 393-412

Advantages of updfevolv:
I the structure of the code suitable for usage in xFitter (to have full TMDs):

structure of grids → fitting method fast (see slide 13 )
I different options for studying large z behaviour (see slide 15 )
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Introduction to the method

Sudakov formalism & MC solution of the evolution equation

Sudakov formalism

Evolution equation for parton density

t
∂f (x , t)

∂t
=
αs

2π

∫
dz

z
P(z)+f

( x
z
, t
)

=
αs

2π

∫
dz

z
P(z)f

( x
z
, t
)
−
αs

2π
f (x , t)

∫
dzP(z), (1)

where
∫ 1

0 f (x)g(x)+dx =
∫ 1

0 f (x)g(x)dx −
∫ 1

0 f (1)g(x)dx .

Introducing Sudakov form factor

∆s(t, t0) ≡ ∆s(t) = exp
(
−
∫ zmax

0
dz

∫ t

t0

αs

2π

dt′

t′
P(z)

)
(2)

we can rewrite (1)

t
∂f (x , t)

∂t
=
αs

2π

∫
dz

z
P(z)f (

x

z
, t) + f (x , t)

t

∆s(t)

∂∆s(t)

∂t
. (3)

After integration

f (x , t) = f (x , t0)∆s(t) +
αs

2π

∫
dt′

t′
∆s(t)

∆s(t′)

∫
dz

z
P(z)f (

x

z
, t′). (4)
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Introduction to the method

Sudakov formalism & MC solution of the evolution equation

Sudakov formalism

f (x , t) = f (x , t0)∆s(t) +
αs

2π

∫
dt′

t′
∆s(t)

∆s(t′)

∫
dz

z
P(z)f (

x

z
, t′). (5)

Sudakov: probability of evolving from t0 to t without any resolvable branching.

iterative solution:

f (x , t) = lim
n→∞

fn(x , t) = lim
n→∞

∑
n

1

n!
logn

( t
t0

)
An ⊗∆s(t)f (

x

z
, t0), (6)

where A = αs
2π

∫ dz
z
P(z).
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Introduction to the method

Sudakov formalism & MC solution of the evolution equation

Momentum weighted parton densities & momentum sum rule

More details:
Not true that for every splitting function : P(z) = P(z)+

→ the Sudakov form factor formalism more complicated, in ∆s(t) the virtual part of P(z).
But
convenient to have the same splitting functions:

P - regularized splitting function (can be with plus prescription),

P̂ - unregularized splitting function (without plus prescription)

To include all flavours in the evolution & use ∆s(t) with unregularised splitting functions we
need to

switch from f (x , t) to xf (x , t) & use momentum sum rule:

∑
a

∫ 1

0

zPab(αs , z)dz = 0. (7)

Advantage: get rid of 1
z

term in Pgg and Pgq .
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Quark and Gluon collinear and TMD parton distributions from HERA DIS data

Introduction to the method

Sudakov formalism & MC solution of the evolution equation

Momentum weighted parton densities & momentum sum rule

Example for gluon:
P - regularized splitting function (can be with plus prescription),

P̂ - unregularized splitting function (without plus prescription)

t
∂xg(x, t)

∂t
=
αs

2π

∫ 1

x

dz

z

[
Pgq(z)xq

(
x

z
, t

)
+ Pgg (z)xg

(
x

z
, t

)]

−
αs

2π
xg(x, t)

∫ 1

0

dzz

[∑
i

Pqi g
+ Pgg

]
︸ ︷︷ ︸

0

→
αs

2π

∫ zmax

x

dz

z

[
P̂gq(z)xq

(
x

z
, t

)
+ P̂gg (z)xg

(
x

z
, t

)]
−
αs

2π
xg(x, t)

∫ zmax

x

dzz
(

2nf P̂qg + zP̂gg

)

(8)

→
t
∂xg(x, t)

∂t
=
αs

2π

∫
dz

z

∑
j

P̂gj (z)xfj (
x

z
, t) + xg(x, t)

t

∆s (t)g

∂∆s (t)g

∂t
. (9)

where Sudakov is defined with unregularised splitting functions:

∆s (t)g = exp
(
−
∫ zmax

x

dz

∫ t

t0

αs

2π

dt′

t′
z
∑
j

P̂(z)jg
)

(10)
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Quark and Gluon collinear and TMD parton distributions from HERA DIS data

Introduction to the method

Sudakov formalism & MC solution of the evolution equation

MC solution of the evolution equation

Purpose of MC method: solve integrals, generate branchings where explicitly energy momentum
conservation is applied

First branching:
evolve from t0 to t′ obtained from ∆s(t′):

R1 = ∆s(t′), (11)

where R1 is a random number in the interval (0, 1).

Check:
if t′ > t evolution is stopped without any branching,

if t′ < t branching is generated according to P(z)∫ z
zmin

dz ′P(z ′) = R2

∫ zmax
zmin

dz ′P(z ′) (12)

and the evolution continues.

Second branching:
evolve from t′ to t′′ generated according to ∆s(t′′, t′).

check:
If t′′ > t evolution is stopped only with one branching.

If t′′ < t branching is generated according to P(z) and the evolution continues...etc.
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Quark and Gluon collinear and TMD parton distributions from HERA DIS data

Introduction to the method

Evolution code & fitting method

Evolution in the code

We consider ep collisions in which we can measure different pdfs:

Forward evolution: final parton is not specified when the evolution begins.

Four different situations:

I gluon at the beginning and at the end,

I quark at the beginning and gluon at the end,

I quark at the beginning and quark at the end,

I gluon at the beginning and quark at the end.
Figure : Kgg , Kgq , Kqq ,Kqg

The initial distributions for u, d , s, u, d , s and gluon come from QCDNum17 (but any other
parametrization can be used).

12 / 27



Quark and Gluon collinear and TMD parton distributions from HERA DIS data

Introduction to the method

Evolution code & fitting method

Evolution in the code

We consider ep collisions in which we can measure different pdfs:

Forward evolution: final parton is not specified when the evolution begins.

Four different situations:

I gluon at the beginning and at the end,

I quark at the beginning and gluon at the end,

I quark at the beginning and quark at the end,

I gluon at the beginning and quark at the end.
Figure : Kgg , Kgq , Kqq ,Kqg

The initial distributions for u, d , s, u, d , s and gluon come from QCDNum17 (but any other
parametrization can be used).

12 / 27



Quark and Gluon collinear and TMD parton distributions from HERA DIS data

Introduction to the method

Evolution code & fitting method

Fitting method- grids

New approach to fitting method

Two different evolution grids are defined:

I initial quark → quark grid,

I initial gluon → gluon grid.

Kernels for evolution initiated by gluons and quarks are calculated separately only once per run of
the code and combined at the end → fitting procedure is fast.

Figure : Kgg , Kgq , Kqq ,Kqg : gluon grid , quark grid

To get the final pdf: evolution kernel is folded with starting distribution. For example for gluon:

xf (x , t)g = x

∫
dx0

∫
dz (f0g (x0)Kgg + f0q(x0)Kgq) δ(zx0 − x), (13)
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Integrated PDFs from TMD evolution using MC method

Avoiding divergences in P(z) at z → 1

Avoiding divergences in P(z) at z → 1

Some of the splitting functions are divergent for z → 1.

To avoid divergences:

∂xf (x , t)
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x
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(14)

it can be shown that terms
∫ 1
zmax skipped in the integral in eq. (14) are of order O(1− zmax )

multiplied by xf (x , t) or x df (x,t)
dt

Different choices of zmax :

I zmax - fixed

I zmax - can change dynamically with the scale, for example:

angular ordering: zmax = 1−
(

Q0
Q

)2

In this presentation: results from fixed zmax (dynamical will come in the future).
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Integrated PDFs from TMD evolution using MC method

Comparison with semi analytical methods

up quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

up=upval+upsea at 2 GeV^2

log(x)
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MC results close to the QCDNum results.
The differences between MC and QCDNum at large x are an artefact of the histogram binning.
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Integrated PDFs from TMD evolution using MC method

Comparison with semi analytical methods

up quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

up=upval+upsea at 100000 GeV^2
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MC results close to the QCDNum results.
Effects on zmax observed: zmax values closer to 1 give better results:
for higher scale more splittings: effect of zmax being far away from 1 accumulated.
The differences between MC and QCDNum at large x are an artefact of the histogram binning.
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Comparison with semi analytical methods

sea quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

sea=upsea+dnsea+ssea at 2 GeV^2
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The differences between MC and QCDNum at large x are an artefact of the histogram binning.
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Comparison with semi analytical methods

sea quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

sea=upsea+dnsea+ssea at 100000 GeV^2

log(x)
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

xf
(x

, t
)

-510

-410

-310

-210

-110

1

10

 

log(x)
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

M
C

/Q
C

D
N

um

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

MC results close to the QCDNum results.

Effects on zmax observed: zmax values closer to 1 give better results:
for higher scale more splittings: effect of zmax being far away from 1 accumulated.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Integrated PDFs from TMD evolution using MC method

Comparison with semi analytical methods

gluon

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

gluon at 2 GeV^2
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MC results close to the QCDNum results.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Integrated PDFs from TMD evolution using MC method

Comparison with semi analytical methods

gluon

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

gluon at 100000 GeV^2
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MC results close to the QCDNum results.
Effects on zmax observed: zmax values closer to 1 give better results:
for higher scale more splittings: effect of zmax being far away from 1 accumulated.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Results for TMDs

Calculation of TMDs

kT dependence

MC method: for every branching Q is generated and Qx and Qy are calculated
→ The information about kT is available for every branching.

kT contains the whole history of the evolution:
−→
k T ,n =

−→
k T ,n−1 +

−→
Q T ,n−1.
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Results for TMDs

Example of TMD results

up quarks

1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−9

I Initial scale: intrinsic kt distribution.

I Different choices of zmax lead to different uTMDs, especially different large kT tails.
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First fit of full integrated TMDs to HERA DIS data with xFitter
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First fit of full integrated TMDs to HERA DIS data with xFitter

xFitter and TMDs in the past

TMDs and xFitter
xFitter - an open source QCD fit framework to extract PDFs.

https://wiki-zeuthen.desy.de/xFitter/

What was done within xFitter with TMDs:

gluon TMD pdf fit to F2 from H1/Zeus data for Q2 > 5GeV2 for x < 0.01

Nuclear Physics B 883 (2014) 1-19 23 / 27

https://wiki-zeuthen.desy.de/xFitter/
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First fit of full integrated TMDs to HERA DIS data with xFitter

New results

First fit of full integrated TMDs to HERA H1 and Zeus data WORK IN PROGRESS
Integrated TMDs for gluon, valence and sea from updfevolv were used in xFitter to fit F2.
QCDNum convolution of integrated TMDs with collinear ME was used to obtain the structure function.

Fits works reasonably well for the whole x range and Q2 > 8.5GeV2 (χ2/ndf ≈ 1.07). 24 / 27
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Summary

Summary

New approach to solve coupled gluon and quark DGLAP evolution equation with MC method
was shown.

Advantages:

I a full TMD pdf evolution including gluon, sea and valence quarks over the full range in x
and Q2 with the kT dependence in the whole kinematically available range (not limited to
the small kT ),

I reproduce semi-analytical solution (results consistent with QCDNum),

I direct usage in PS matched calculation.

TMDs are implemented in the preliminary version of xFitter.

New results of fitting integrated TMD pdfs to F2 with xFitter were shown:
gluon and quark are fitted for Q2 > 8.5GeV2 for all x with χ2/ndf ≈ 1.07

Prospects:

I include NLO in P(z),

I development of full TMD MC - CASCADE.
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Summary

Thank you!
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Back up

zmax dependence

Ordering dependence- zmax origin
Some of the splitting functions are divergent for z → 1.

To avoid divergences:

∂xf (x, t)

∂t
=
αs

2π

1

t

∫ 1

x
dzP(z)

x

z
f

(
x

z
, t

)
−
αs

2π
xf (x, t)

1

t

∫ 1

x
dzP(z) ≈

≈
αs

2π

1

t

∫ zmax

x
dzP(z)

x

z
f

(
x

z
, t

)
−
αs

2π
xf (x, t)

1

t

∫ zmax

x
dzP(z).

(15)

Using the form of the splitting functions:

Pab(αs , z) = Aab(αs )δ(1− z) + Kab(αs )
1

(1− z)+
+ Rab(αs ) (16)

and the expansion of xf ( x
z
, t)

xf

(
x

z
, t

)
= xf (x, t) + x2f ′(x, t)(1− z) +O(1− zmax ) (17)

it can be shown that terms
∫ 1
zmax skipped in the integral in eq. (15) are of order O(1− zmax ) multiplied by xf (x, t) or x

df (x′t)
dt

example:

αs

2π

1

t

∫ 1

zmax

dzKab(αs )
1

1− z

x

z
f

(
x

z
, t

)
−
αs

2π
xf (x, t)

1

t

∫ 1

zmax

dzKab(αs )
1

1− z
=

=
αs

2π

1

t
Kab(αs )

[
x2f ′(x, t) (1− zmax ) +O(1− zmax )

]
(18)
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Back up

zmax dependence

up quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

up=upval+upsea at 2 GeV^2

log(x)
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MC results close to the QCDNum results.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Back up

zmax dependence

up quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

up=upval+upsea at 1000 GeV^2
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MC results close to the QCDNum results.
Effects on zmax observed: zmax values closer to 1 give better results.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Back up

zmax dependence

up quarks
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The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Back up

zmax dependence

down quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

dn=dnval+dnsea at 2 GeV^2
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MC results close to the QCDNum results.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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Back up

zmax dependence

down quarks

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9
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MC results close to the QCDNum results.
Effects on zmax observed: zmax values closer to 1 give better results.
The differences between MC and QCDNum at x are an artefact of the histogram binning.
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zmax dependence

gluon

QCDNum, 1-zmax=10−3, 1-zmax=10−5, 1-zmax=10−7, 1-zmax=10−9

gluon at 2 GeV^2
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Results for TMDs

down quarks

zmax = 0.999, zmax = 0.99999, zmax = 0.999999999

I Initial scale: intrinsic kt distribution.

I Different choices of zmax lead to different uTMDs, especially different large kT tails. 7 / 9
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