

Search for SM and MSSM dimuon Higgs decay channel with CMS

12th April 2016

Adrian Perieanu

on behalf of the CMS Collaboration

Higgs production at LHC and its decays

Higgs production at LHC and its decays

* Higgs is produced at LHC mainly through the gluon fusion and Vector Boson fusion

Production Proces	Observed Significance (σ)	Expected Significance (σ)
VBF	5.4	4.7
Wh	2.4	2.7
Zh	2.3	2.9
V(W+Z)h	3.5	4.2
ttH	4.4	2.0

not yet "observed"

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV

DIS 12th April '16

Higgs dimuon decay - why is it interesting? -

* dimuon channel gives us access to the 2nd lepton generation coupling

* allows ratio of 2nd and 3rd generation lepton couplings:

are we talking about the same mass generation mechanism for the 2nd and 3rd generation lepton?

— what about the 2nd and 3rd generation quarks?

at the LHC

DIS 12th April '16

with the Compact Muon Solenoid

* Muons in CMS: track segment reconstructed in the muon chambers matched with the track in silicon tracker (both ways)

during the shut down

Higgs dimuon decay — signal vs. background —

DIS 12th April '16

Higgs dimuon decay: Run I analysis - event selection -

* this category and VBF are the most sensitive

Adrian Perieanu

where is Higgs dimuon decay mode standing?

beyond SM

SM breaking via MSSM

MSSM: Φ⁰ (h⁰, H⁰, A⁰), H[±]

- Higgs sector can be described by: tanß and m_A
- $\tan \beta = v_1/v_2$ where v_1 and v_2 are vacuum expectation values

main background processes:
VBF Drell-Yan (use b-tagging)
bb Z/γ* (irreducible background)
te plane(use missing energy in transverse plane)
WW (use b-tagging)
WZ, ZZ

signal: associated b-quark production

background tt

and the lative to SM search gainst Drell-Yan (relative to SM search) motered first the SM search information (not yet) not yet)

DIS 12th April '16

"money"

plots beyond SM

• when fitting, one needs to take into account the expected double peak structure shape which depends on tan β and m_A

• dimuon channel has the needed mass resolution to distinguish between h/H/A

19.3 fb⁻¹ (8 TeV) CMS Events / 2 GeV ₀01 0₂ Data, no b tag W+W W⁺Z 10⁵ ΖZ Drell-Yan 10⁴ Signal, $m_{A} = 150$ GeV, $tan\beta = 30$ 10³ 10² 10 10⁻¹ 10² 10^{3}

Adrian Perieanu

MSSM: Φ⁰ (h⁰, H⁰, A⁰), H[±]

• Higgs sector can be described by: $\tan\beta$ and m_A • $tan\beta = v_1/v_2$ where v_1 and v_2 are vacuum expectation values

plots beyond SM

"money"

LHC run-1 2011-2012 (19.8-24.6 fb¹)

 we reached a sensitivity similar to the Higgs bb decay channel

"money" plots beyond MSSM

assumptions:

- ϕ^0 produced entirely via bb associated production or only via gluon-gluon fusion
- single mass resonance search with detector efficiency obtained from A^o at tanB = 20:
- bias from kinematics is negligible
- mass resolution much larger than the expected signal width

before the END... prospects for future — Higgs dimuon decay —

* new detectors design will make possible to improve dimuon mass resolution considerably

> hopefully some of us will still try to answer the questions mentioned before 17

* SM sensitivity will be reached before LS2

* observation (> 5σ) expected during HL-LHC

Higgs couplings after 3000 fb⁻¹ – where would we like to go –

for some while

Higgs dimuon decay - why is it interesting? -

* dimuon channel gives us access to the 2nd lepton generation coupling

* allows ratio of 2nd and 3rd generation lepton couplings:

 are we talking about the same mass generation mechanism for the 2nd and 3rd generation lepton?

— what about the 2nd and 3rd generation quarks?

	Spin (small blue circle
	ring: 0
	circle: 1
more than 80 GeV/c^2	semicircle: 1/2
1-5 GeV/c^2	Particip
90-110 MeV/c^2	
less than 16 MeV/c^2	
Massless	

es in the middle):

pation in interactions:

Weak force (note: only particles with non-zero mass are here)

Electromagnetic force

Strong force

DIS 12th April '16

Adrian Perieanu

Mass:

1/3 circle: 1/3 or -1/3 respectively

 $m_{H,h} = \left\{ \frac{1}{2} \left\{ m_A^2 + m_Z^2 \pm \left[(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta \right]^{1/2} \right\} \right\}^{1/2}$

 m_h mod+ and mod - scenarios: not excluded as m_h max M. Carena *et al.* http://arxiv.org/pdf/1302.7033v1.pdf

DIS 12th April '16