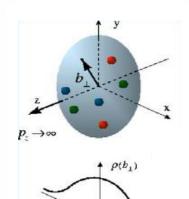
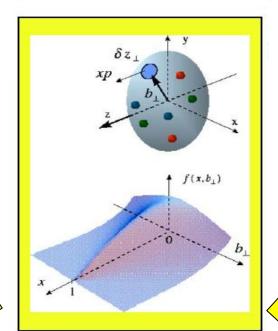

Experimental overview of DVCS and GPDs at Jefferson Lab

Silvia Niccolai, IPN Orsay for the CLAS Collaboration

DIS16 – Hamburg (Germany) 13/4/2016

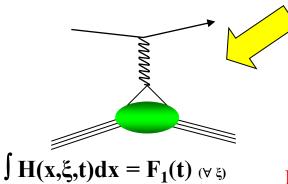


- Interest of GPDs
- GPDs and Deeply Virtual Compton Scattering
 - New DVCS results from Jefferson Lab
 - The JLab 12 GeV upgrade
 - Future JLab experiments on DVCS



Electron-proton scattering to study nucleon structure

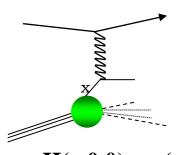
GPDs: H, E, H, E
Fully correlated quark
distributions in both coordinate
and momentum space



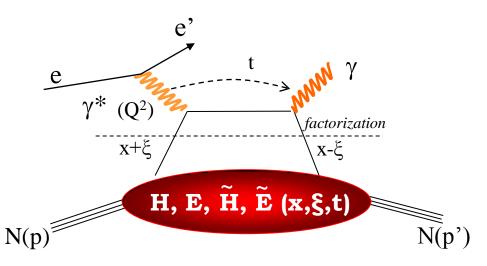
 $\begin{cases} \delta z_1 \\ xp \end{cases}$

Parton distributions:
longitudinal
quark distribution
in momentum space

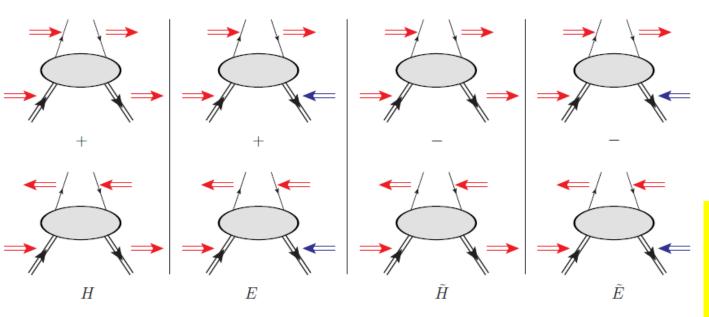
Form factors:


transverse quark distribution in coordinate space

 $\int \mathbf{E}(\mathbf{x},\boldsymbol{\xi},t)d\mathbf{x} = \mathbf{F}_2(t) \ (\forall \ \boldsymbol{\xi})$


Accessible in hard exclusive processes

High Q² Final state known


$$\mathbf{H}(\mathbf{x},\mathbf{0},\mathbf{0}) = \mathbf{q}(\mathbf{x}),$$

$$\mathbf{H}(\mathbf{x},\mathbf{0},\mathbf{0}) = \Delta \mathbf{q}(\mathbf{x})$$

Deeply Virtual Compton Scattering and GPDs

- $Q^2 = -(e-e')^2$
- $\bullet \ x_B \equiv Q^2/2M\nu \quad \nu = E_e E_{e'}$
- $x+\xi$, $x-\xi$ longitudinal momentum fractions
- $t = \Delta^2 = (p-p')^2$
- $\xi \cong x_B/(2-x_B)$

« **Handbag** » factorization valid in the **Bjorken regime** (high Q^2 and v, fixed x_R), t << Q^2

GPDs: Fourier transforms of nonlocal, nondiagonal QCD operators

At leading order QCD, twist 2, chiral-even (quark helicity is conserved), quark sector

 \rightarrow 4 GPDs for each quark flavor

conserve nucleon spin

flip nucleon spin

Vector: $\mathbf{H}(\mathbf{x},\boldsymbol{\xi},\mathbf{t})$ Axial-Vector: $\mathbf{H}(\mathbf{x},\boldsymbol{\xi},\mathbf{t})$

Tensor: $\mathbf{E}(\mathbf{x},\boldsymbol{\xi},\mathbf{t})$ Pseudoscalar: $\mathbf{E}(\mathbf{x},\boldsymbol{\xi},\mathbf{t})$

Properties and "virtues" of GPDs

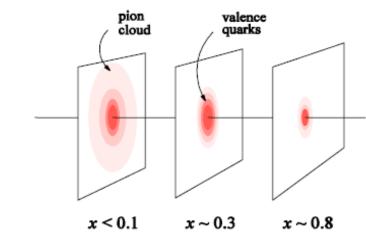
$$\int H(x,\xi,t)dx = F_1(t) \quad \forall \xi$$

$$\int E(x,\xi,t)dx = F_2(t) \quad \forall \xi$$

$$\int \widetilde{H}(x,\xi,t)dx = G_A(t) \quad \forall \xi$$

$$\int \widetilde{E}(x,\xi,t)dx = G_P(t) \quad \forall \xi$$

- Link with **FFs**


$$H(x,0,0) = q(x)$$
 Forward limit: **PDFs**
 $\tilde{H}(x,0,0) = \Delta q(x)$ (not for E, \tilde{E})

Nucleon tomography

$$q(x, \mathbf{b}_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp} \mathbf{b}_{\perp}} H(x, 0, -\Delta_{\perp}^{2})$$

$$\Delta q(x, \mathbf{b}_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp} \mathbf{b}_{\perp}} \widetilde{H}(x, 0, -\Delta_{\perp}^{2})$$

M. Burkardt, PRD 62, 71503 (2000)

Quark angular momentum (Ji's sum rule)

$$\frac{1}{2} \int_{-1}^{1} x dx (H(x, \xi, t = 0) + E(x, \xi, t = 0)) = J = \frac{1}{2} \Delta \Sigma + \Delta L$$

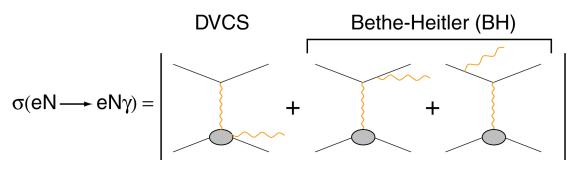
Nucleon spin:
$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta L + \Delta G$$

Intrinsic spin of the quarks $\Delta\Sigma \approx 30\%$ Intrinsic spin on the gluons $\Delta G \approx 0-20\%$

X. Ji, Phy.Rev.Lett.78,610(1997)

Orbital angular momentum of the quarks ΔL ?

Accessing GPDs through DVCS

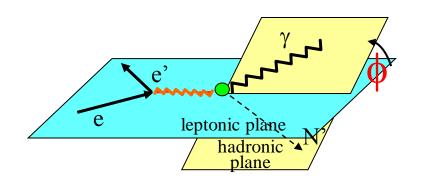

DVCS allows access to 4 complex GPDs-related quantities: Compton Form Factors (ξ,t)

$$T^{DVCS} \sim P \int_{1}^{\infty} \frac{GPDs(x,\xi,t)}{x \pm \xi} dx \pm i\pi GPDs(\pm \xi,\xi,t) + \dots$$

Only ξ and t are accessible experimentally

$$Re\mathcal{H}_{q} = e_{q}^{2} P \int_{0}^{+1} \left(H^{q}(x, \xi, t) - H^{q}(-x, \xi, t) \right) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx$$

$$Im\mathcal{H}_{q} = \pi e_{q}^{2} \left[H^{q}(\xi, \xi, t) - H^{q}(-\xi, \xi, t) \right]$$



BH is calculable (electromagnetic FFs)

$$\sigma \sim \left| T^{DVCS} + T^{BH} \right|^{2} \to \text{Re}(CFFs) \quad (also \, DSA)$$

$$\Delta \sigma = \sigma^{+} - \sigma^{-} \propto I(DVCS \cdot BH) \to \text{Im}(CFFs)$$

$$A = \frac{\Delta \sigma}{2\sigma} \propto \frac{I(DVCS \cdot BH)}{\left| BH \right|^{2} + \left| DVCS \right|^{2} + I}$$

Sensitivity to CFFs of DVCS spin observables

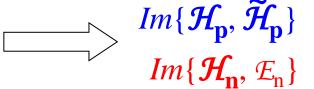
$$A_{LU(UL)} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} \propto \frac{s_{1,unp(UL)}^{I} \sin \phi}{c_{0,unp}^{BH} + c_{0,unp}^{I} + (c_{1,unp}^{BH} + c_{1,unp}^{I}) \cos \phi}$$

$$A_{LL} = \frac{\sigma^{++} + \sigma^{+-} - \sigma^{+-} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-} + \sigma^{+-} + \sigma^{+-}} \propto \frac{c_{0,LP}^{BH} + c_{0,LP}^{I} + (c_{1,LP}^{BH} + c_{1,unp}^{I}) \cos \phi}{c_{0,unp}^{BH} + c_{0,unp}^{I} + (c_{1,unp}^{BH} + c_{1,unp}^{I}) \cos \phi}$$

Twist-2 approximation (-t<<O²)

$$(\xi = x_B/(2-x_B)$$
 k=-t/4M²)

Proton Neutron


Polarized beam, unpolarized target:

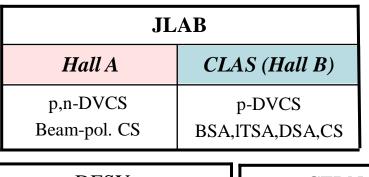
$$s_{1,unp}^{I} \sim sin\phi Im\{F_1\mathcal{H} + \xi(F_1 + F_2)\mathcal{H} - kF_2\mathcal{E}\}$$

Unpolarized beam, longitudinal target:

$$s_{1.UL}^{I} \sim sin\phi Im\{F_1 \mathcal{H} + \xi(F_1 + F_2)(\mathcal{H} + x_B/2\mathcal{E}) - \xi kF_2 \mathcal{E} + ...\}$$

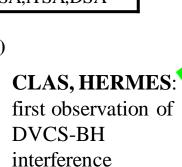
Polarized beam, longitudinal target:

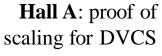
$$c_{1,LP}^{I} \sim (A+B\cos\phi)Re\{F_{1}\mathcal{H}+\xi(F_{1}+F_{2})(\mathcal{H}+x_{B}/2\mathcal{E})...\}$$

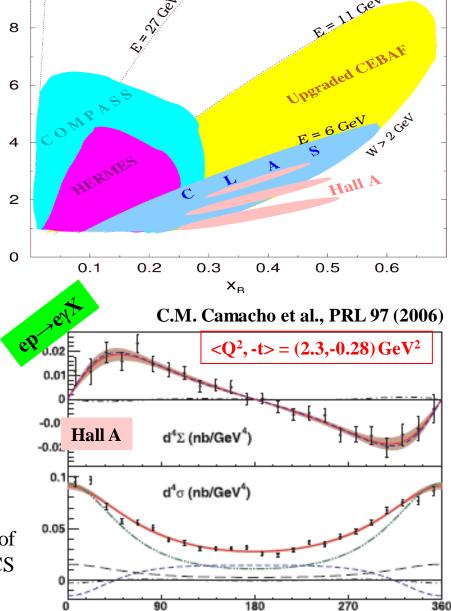


Unpolarized beam, transverse target:

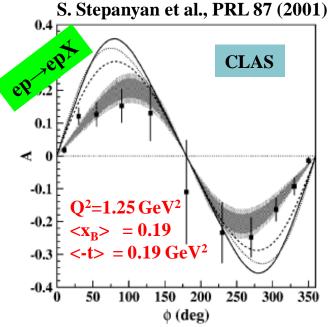
$$\Delta \sigma_{\text{UT}} \sim \cos \phi \sin(\phi_s - \phi) \text{Im} \{ k(F_2 \mathcal{H} - F_1 \mathcal{E}) + \dots \}$$

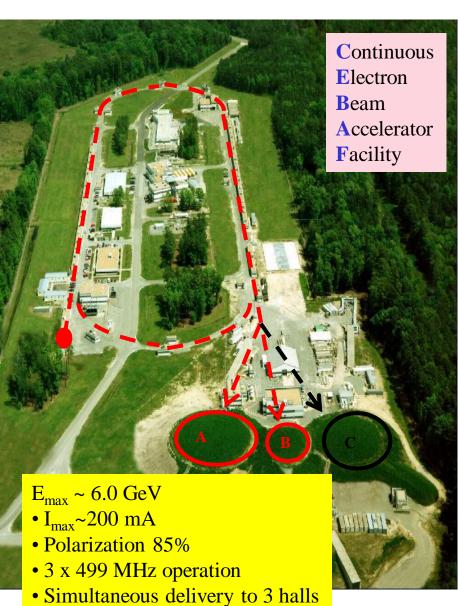



DVCS experiments worldwide



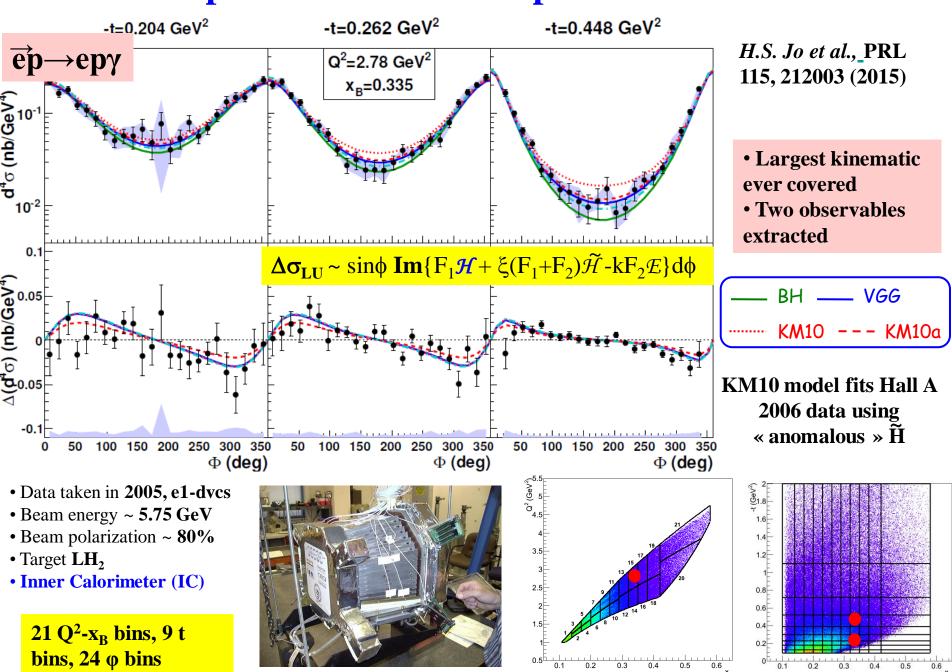
DESY			
HERMES	H1/ZEUS		
p-DVCS	p-DVCS		
BSA,BCA,	CS,BCA		
tTSA,lTSA,DSA			


CERN COMPASS p-DVCS CS,BSA,BCA, tTSA,ITSA,DSA



φ_w(deg)

JLab@6 GeV



• Shutdown in May 2012

CLAS: unpolarized and beam-polarized cross sections

Extraction of Compton Form Factors from DVCS observables

GPDs cannot directly be extracted from DVCS observables, one can access Compton Form Factors:

$$\operatorname{Re}(\mathcal{H}) = P \int_{0}^{1} dx \left[H(x,\xi,t) - H(-x,\xi,t) \right] C^{+}(x,\xi)$$

$$\operatorname{Re}(\mathcal{H}) = P \int_{0}^{1} dx \left[E(x,\xi,t) - E(-x,\xi,t) \right] C^{+}(x,\xi)$$

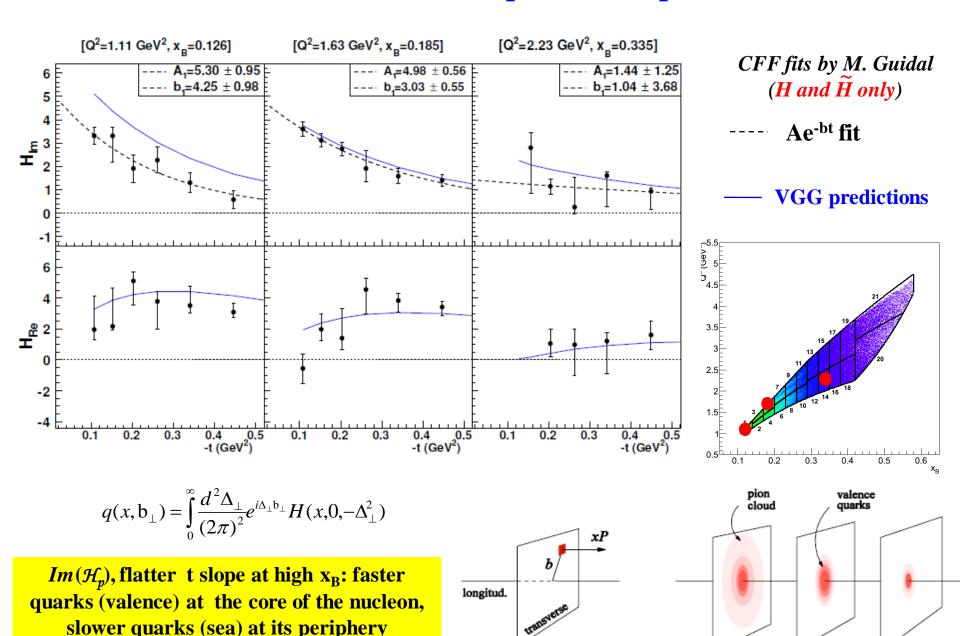
$$\operatorname{Re}(\mathcal{H}) = P \int_{0}^{1} dx \left[\widetilde{H}(x,\xi,t) + \widetilde{H}(-x,\xi,t) \right] C^{-}(x,\xi)$$

$$\operatorname{Re}(\mathcal{H}) = P \int_{0}^{1} dx \left[\widetilde{E}(x,\xi,t) + \widetilde{E}(-x,\xi,t) \right] C^{-}(x,\xi)$$

$$\operatorname{Im}(\mathcal{H}) = H(\xi,\xi,t) - H(-\xi,\xi,t)$$

$$\operatorname{Im}(\mathcal{H}) = E(\xi,\xi,t) - E(-\xi,\xi,t)$$

$$\operatorname{Im}(\mathcal{H}) = \widetilde{H}(\xi,\xi,t) - \widetilde{H}(-\xi,\xi,t)$$

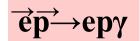

$$\operatorname{Im}(\mathcal{H}) = \widetilde{E}(\xi,\xi,t) - \widetilde{E}(-\xi,\xi,t)$$

$$\operatorname{with} C^{\pm}(x,\xi) = \frac{1}{x-\xi} \pm \frac{1}{x+\xi}$$

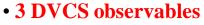
M. Guidal: Model-independent fit, at fixed Q², x_B and t of DVCS observables 8 parameters (the CFFs), loosely bound (+/- 5 x VGG prediction)

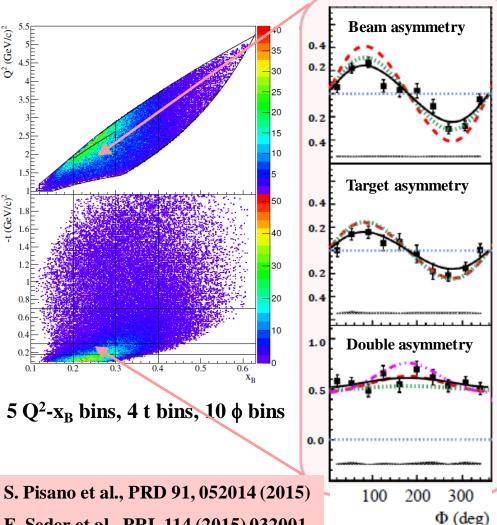
M. Guidal, Eur. Phys. J. A 37 (2008) 319 & many other papers...

Extraction of CFFs from e1dvcs pol. and unpol. cross sections

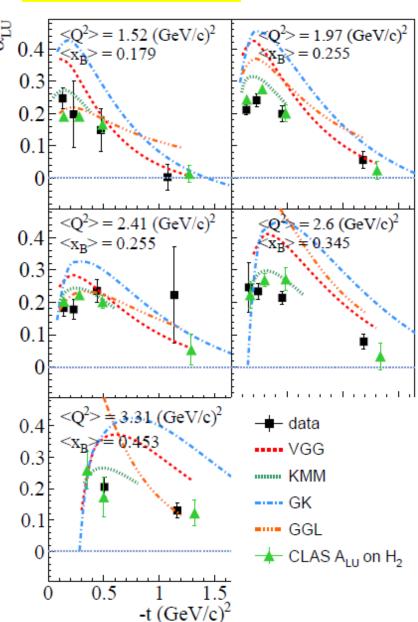

x < 0.1

 $x \sim 0.3$

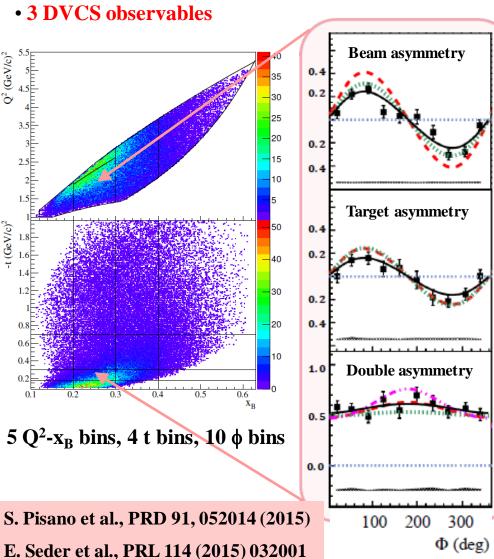

 $x \sim 0.8$


→ PROTON TOMOGRAPHY

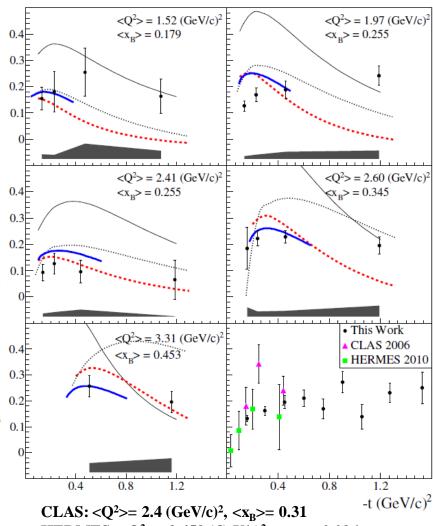
CLAS: DVCS on longitudinally polarized target



- Data taken in 2009, eg1-dvcs
- Beam energy ~5.9 GeV
- CLAS + IC to detect forward photons
- Target: **longitudinally polarized NH₃** (P~80%)



- E. Seder et al., PRL 114 (2015) 032001

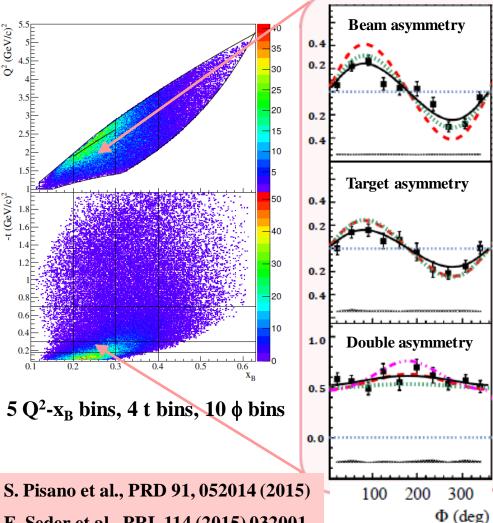

CLAS: DVCS on longitudinally polarized target

 $\overrightarrow{e}\overrightarrow{p}\rightarrow ep\gamma$

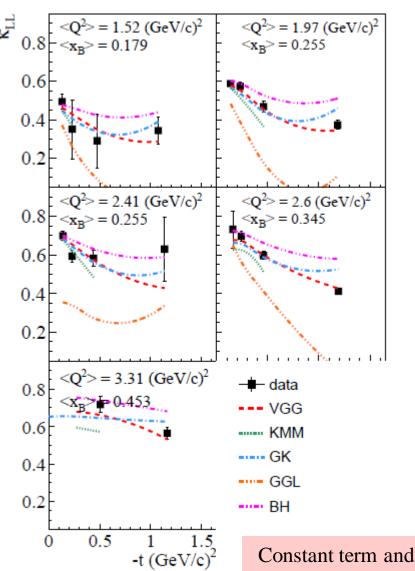
- Data taken in 2009, eg1-dvcs
- Beam energy ~5.9 GeV
- **CLAS** + **IC** to detect forward photons
- Target: longitudinally polarized NH₃ (P~80%)

$TSA \sim Im\{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}\}$

CLAS: $\langle Q^2 \rangle = 2.4 \text{ (GeV/c)}^2, \langle x_B \rangle = 0.31$ HERMES: $\langle Q^2 \rangle = 2.459 \text{ (GeV/c)}^2, \langle x_B \rangle = 0.096$ CLAS2006: $\langle Q^2 \rangle = 1.82 \text{ (GeV/c)}^2, \langle x_B \rangle = 0.28$


- Improved statistics x10 at low –t
 - Extended kinematic coverage

CLAS: DVCS on longitudinally polarized target


 $\overrightarrow{e}\overrightarrow{p}\rightarrow ep\gamma$

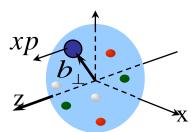
- Data taken in 2009, eg1-dvcs
- Beam energy ~5.9 GeV
- CLAS + IC to detect forward photons
- Target: **longitudinally polarized NH₃** (P~80%)

DSA ~ $Re\{\mathcal{H}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}\}$

E. Seder et al., PRL 114 (2015) 032001

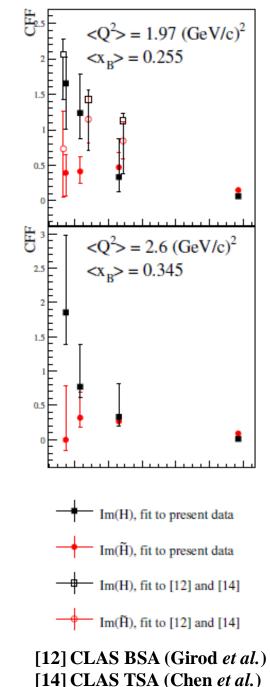
cosφ term are dominated by **BH**

Extraction of CFFs from eg1-dvcs TSA, BSA, DSA


CFFs fitting code by M. Guidal (7 CFFs included in the fit)

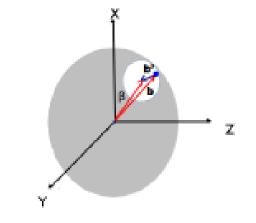
 $Im\mathcal{H}$ has steeper t-slope than $Im\mathcal{H}$: is axial charge more "concentrated" than the electromagnetic charge?

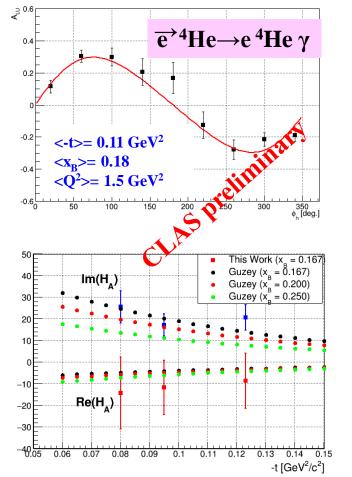

$$\Delta q(x, \mathbf{b}_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp} \mathbf{b}_{\perp}} \widetilde{H}(x, 0, -\Delta_{\perp}^{2})$$

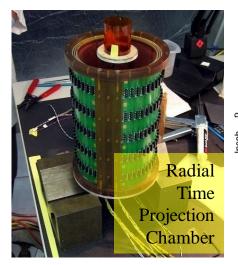

$$\int H(x,\xi,t)dx = F_1(t)$$
$$\int \widetilde{H}(x,\xi,t)dx = G_A(t)$$

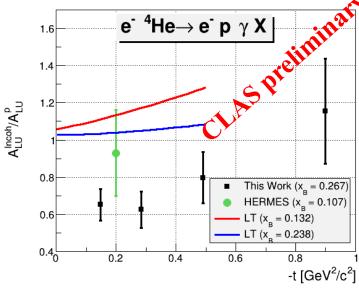
$$\widetilde{H}(x,\xi,t)dx = G_A(t)$$

S. Pisano et al., PRD 91, 052014 (2015)

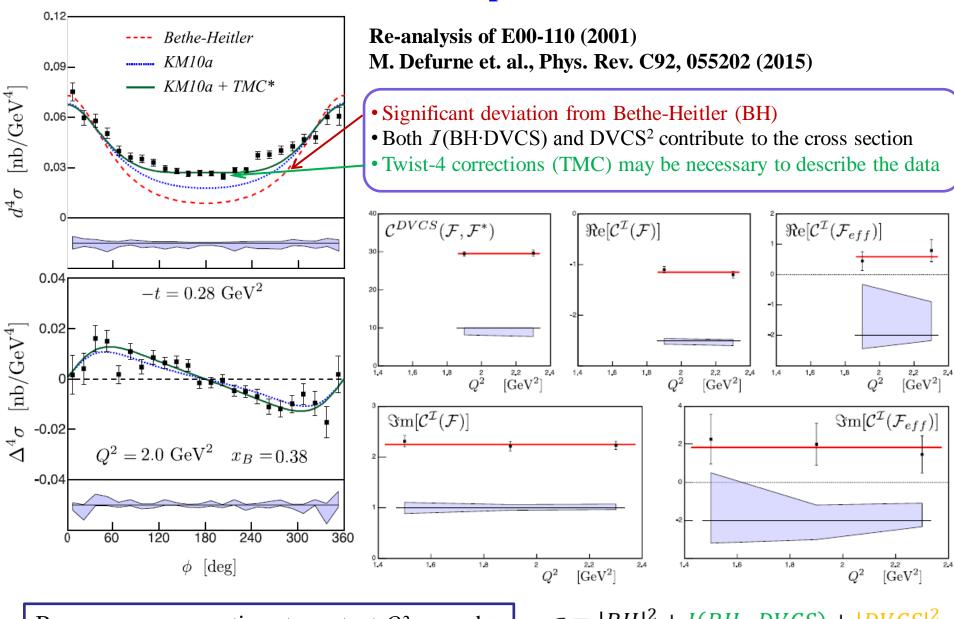



DVCS on nuclei: the CLAS eg6 experiment


- Data taken in the fall 2009
- CLAS+IC+RTPC+4He target; E~6.065 GeV
- Coherent and incoherent DVCS: nuclear GPDs, EMC effect


⁴He is a spin-0 nucleus: at twist-2 **only one CFF** in DVCS BSA

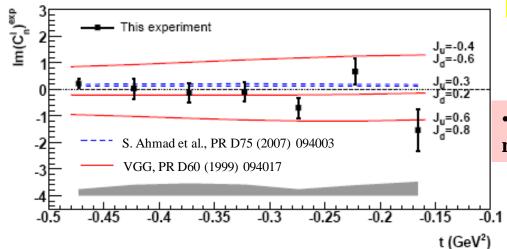
$$\mathbf{A}_{\mathrm{LU}}^{^{4}\mathrm{He}}(\varphi) = \frac{\alpha_{0}(\varphi) F_{A}(t) \, \mathfrak{Im}\big[\mathcal{H}_{A}\big]}{\alpha_{1}(\varphi) F_{A}^{2}(t) + \alpha_{2}(\varphi) F_{A}(t) \, \mathfrak{Re}\big[\mathcal{H}_{A}\big] + \alpha_{3}(\varphi) \, \mathfrak{Re}\big[\mathcal{H}_{A}\big]^{2} + \alpha_{3}(\varphi) \, \mathfrak{Im}\big[\mathcal{H}_{A}\big]^{2}}$$



- ➤ Small –t: asymmetry for ⁴He lower than the bound proton one
- ➤ **High** –t: the two asymmetries tend to become compatible

Work by M. Hattawy, IPNO & ANL

DVCS on the proton in Hall A



Beam-energy separation at constant Q^2 , x_B and t: experiment E07-007 (Analysis ongoing)

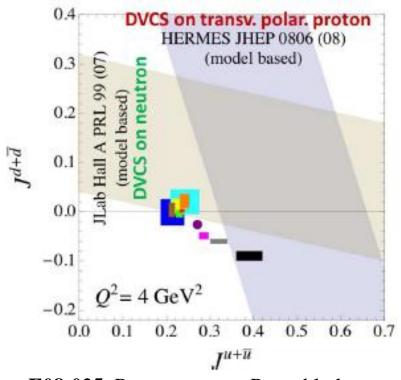
$$\sigma = |BH|^2 + I(BH \cdot DVCS) + |DVCS|^2$$
$$\sim E_h^3 \qquad \sim E_h^2$$

DVCS on the neutron in Hall A

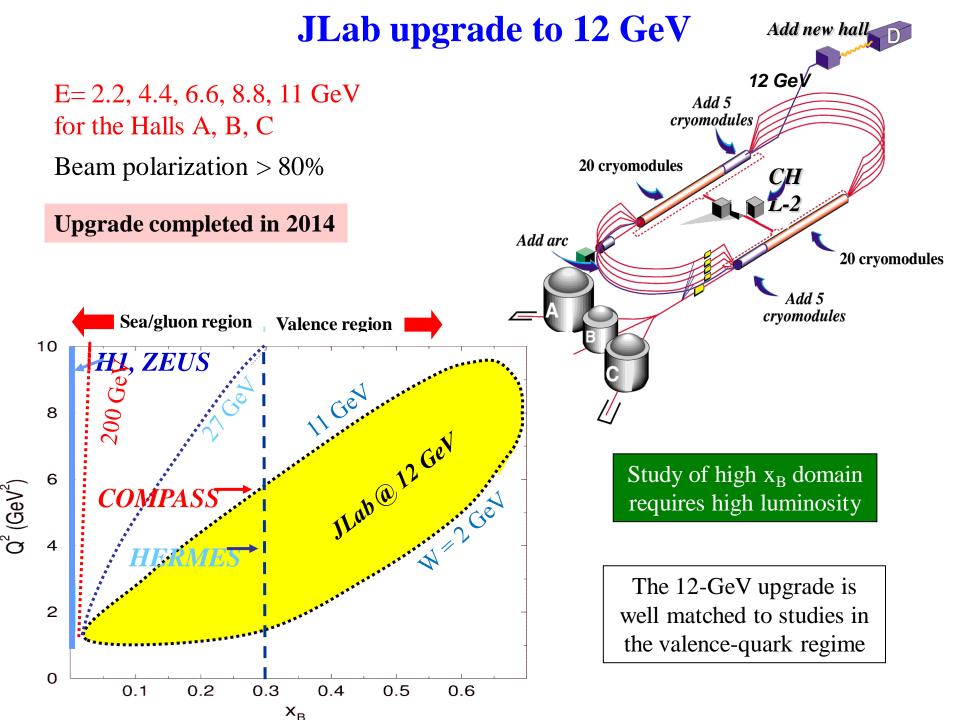
M. Mazouz et al., PRL 99 (2007) 242501

Proton and neutron GPDs (and CFFs) are **linear combinations** of quark GPDs

$$\mathcal{H}_{p}(\xi,t) = \frac{4}{9} \mathcal{H}_{u}(\xi,t) + \frac{1}{9} \mathcal{H}_{d}(\xi,t)$$

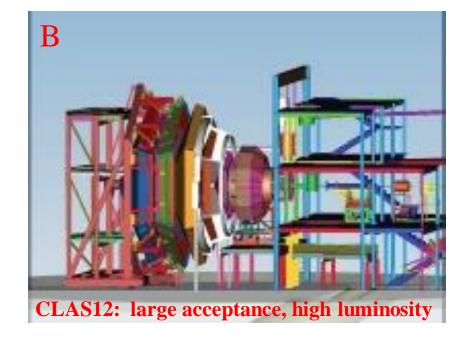

$$\mathcal{H}_{n}(\xi,t) = \frac{1}{9} \mathcal{H}_{u}(\xi,t) + \frac{4}{9} \mathcal{H}_{d}(\xi,t)$$

A combined analysis of DVCS observables for proton and neutron targets is necessary to perform a quark-flavor separation of the GPDs


$$\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi (F_1 + F_2) \mathcal{H} - kF_2 \mathcal{E} \}$$

$$\frac{1}{2} \int_{-1}^{1} x dx (H(x, \xi, t = 0) + E(x, \xi, t = 0)) = J$$

• E03-106: First-time measurement of $\Delta\sigma_{LU}$ for nDVCS, model-dependent extraction of J_u , J_d



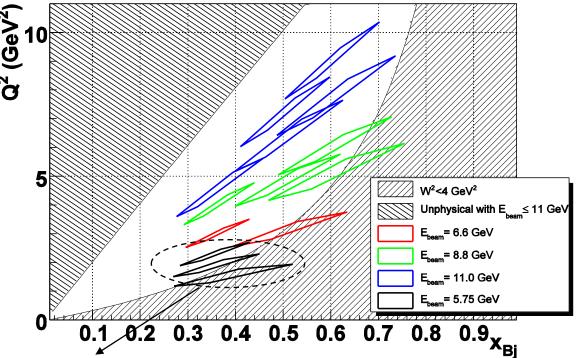
- E08-025: Beam-energy « Rosenbluth » separation of nDVCS CS using an LD2 target
- Data taken in fall 2010, analysis ongoing

New capabilities in Halls A, B & C

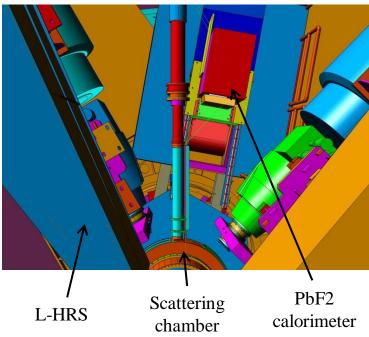
Super High Momentum Spectrometer (SHMS) at high luminosity and forward angles

DVCS experiments at 11 GeV have been approved for each of these **three halls**.

Complementary programs:


- different kinematic coverage
- different precisions/resolutions
- focus on different observables

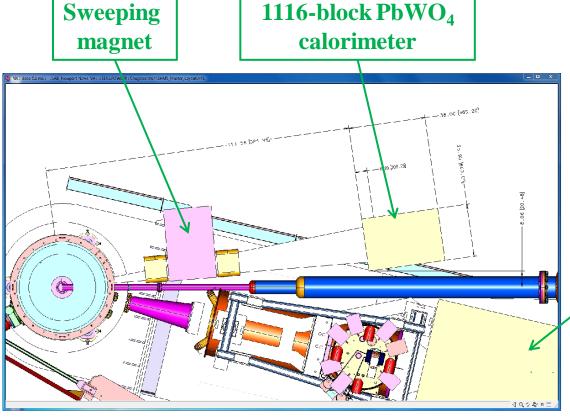
E12-06-114: pDVCS at 11 **GeV** in Hall A

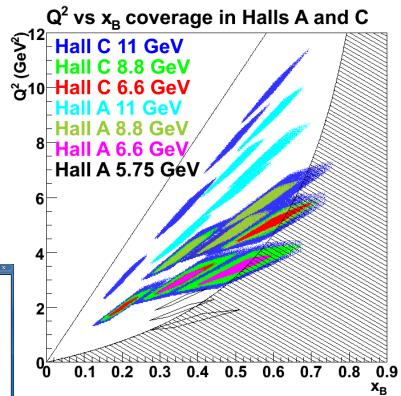

- Absolute cross-section measurements
- Test of scaling: Q^2 dependence of d σ at fixed x_{Bj}
- Increased kinematical coverage

JLab12 with 3, 4, 5 pass beam (6.6, 8.8, 11.0 GeV)

DVCS measurements in Hall A/JLab

JLab @ 6 GeV




1st experiment to run after the 12-GeV upgrade

Started in fall 2014, continuing in 2016

E12-13-010: pDVCS at 11 **GeV** in Hall C

- Energy separation of the DVCS cross section
- Higher Q²: measurement of higher twist contributions
- Low-x_B extension (thanks to sweeping magnet)

Hall C HMS

Tentative running: ~ 2019-20

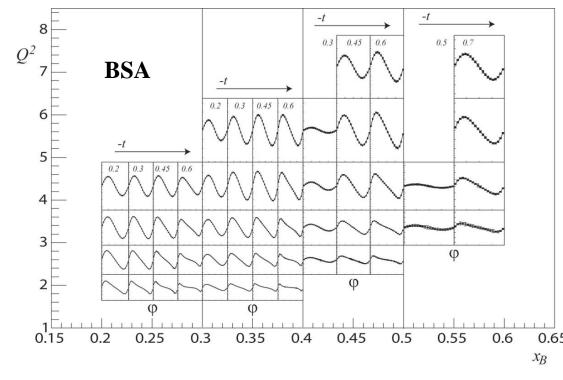
DVCS BSA and TSA with CLAS12 & 11 GeV beam

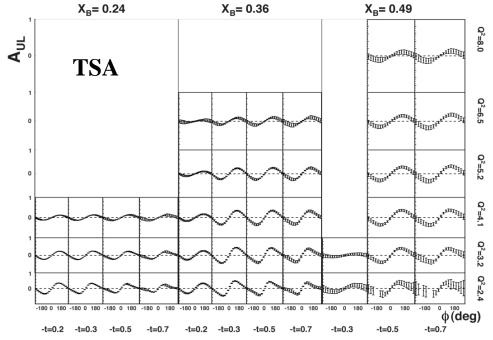
85 days of beam time

Liquid hydrogen target

$$P_{beam} = 85\%$$

$$L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$


$$1 < Q^2 < 10 \text{ GeV}^2$$
, $0.1 < x_B < 0.65$


$$-t_{min}$$
< $-t$ < 2.5 GeV²

Statistical error: 1% to 10%

on sin moments

Systematic uncertainties: ~6-8%

120 days of beam time

 NH_3 long. polarized target $P_{beam} = 85\%$, $P_{target} = 80\%$

$$L = 2.10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

 $1 < Q^2 < 10 \text{ GeV}^2$, $0.1 < x_B < 0.65$

 $-t_{min} < -t < 2.5 \text{ GeV}^2$

Statistical error: 2% to 15%

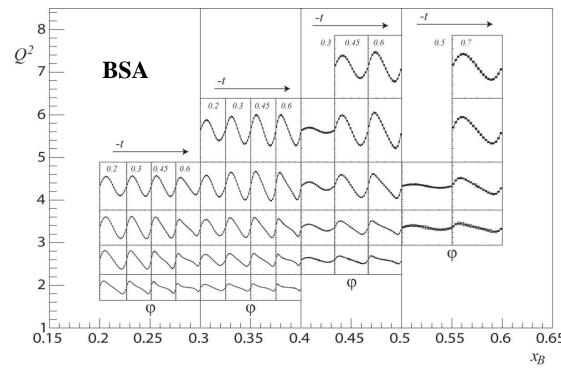
on sin moments

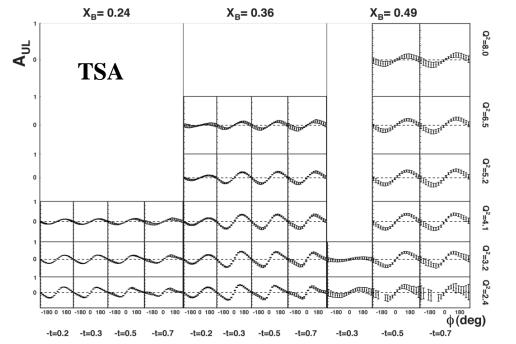
Systematic uncertainties: ~6-8%

DVCS BSA and TSA with CLAS12 & 11 GeV beam

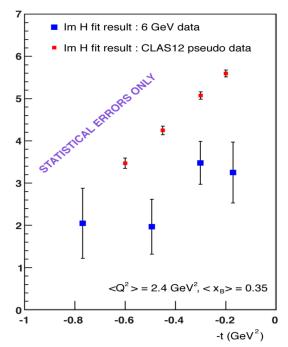
85 days of beam time Liquid hydrogen target $P_{beam} = 85\%$

 $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

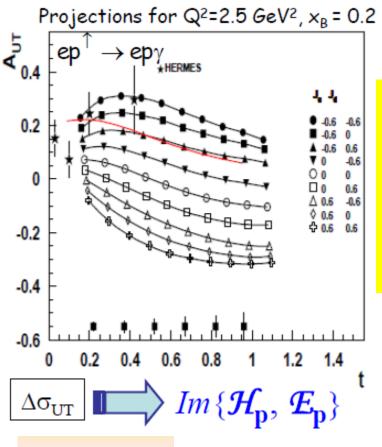

 $1 < Q^2 < 10 \text{ GeV}^2, 0.1 < x_B < 0.65$

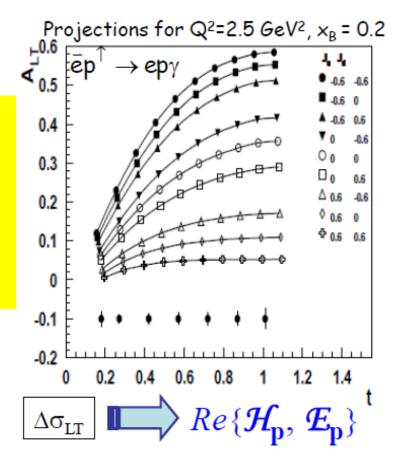

 $-t_{min}$ < -t < 2.5 GeV²

Statistical error: 1% to 10%


on sin moments

Systematic uncertainties: ~6-8%

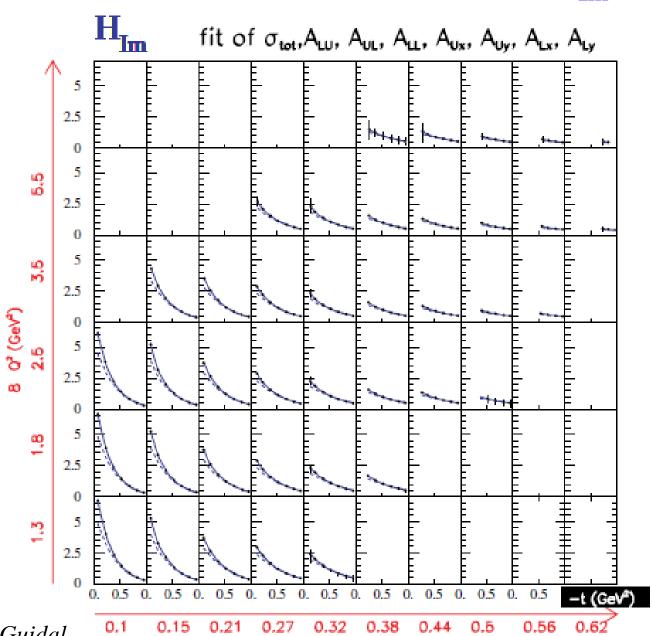



CLAS12: p-DVCS transverse target-spin asymmetry

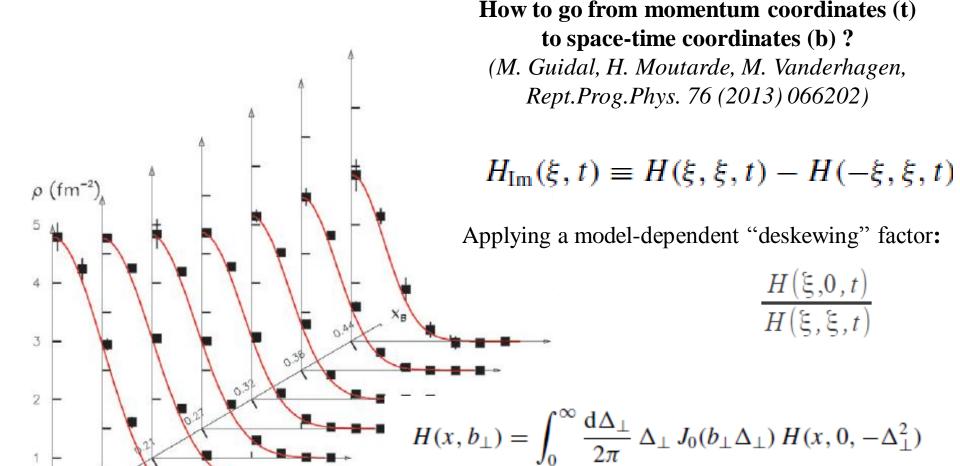
100 days of beam time

Beam pol. = 80%; **target pol.** (**HDIce**) = **60%**; Luminosity = $5x10^{33}$ cm⁻²s⁻¹ $1 < Q^2 < 10$ GeV², $0.06 < x_B < 0.66$, $-t_{min} < -t < 1.5$ GeV²

Transverse-target spin asymmetry for p-DVCS is highly sensitive to the u-quark contributions to proton spin.



JLab PAC:


high-impact experiment

Proposal conditionally approved by PAC39

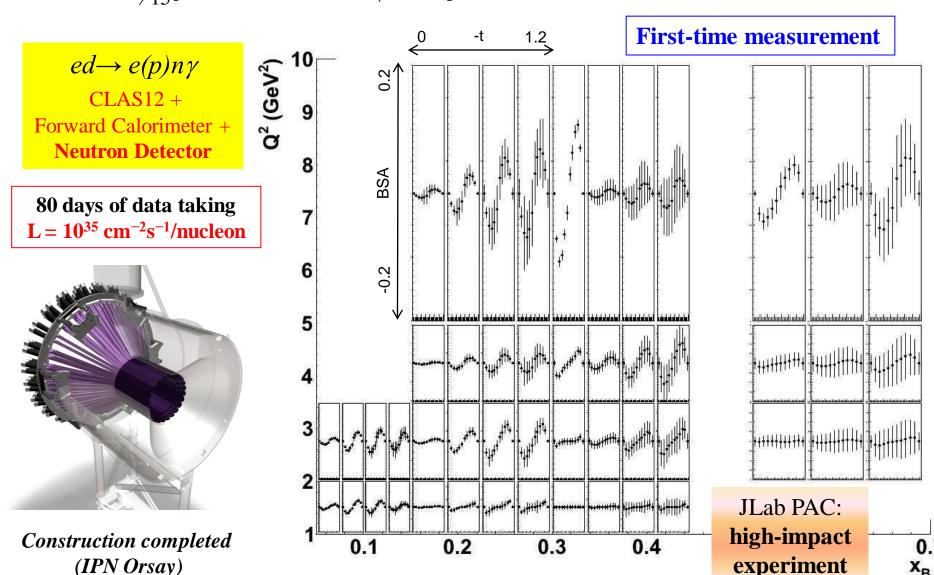
Projections for CLAS12 for H_{Im}

From CFFs to spatial densities

Burkardt (2000)

Projections for CLAS12

b (fm)


E12-11-003: BSA for DVCS on the neutron with CLAS12

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_{p}(\xi,\xi,t) - (H,E)_{n}(\xi,\xi,t) \right]$$

 $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathbf{E} \} d\phi$

$$(H,E)_d(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_n(\xi,\xi,t) - (H,E)_p(\xi,\xi,t) \right]$$

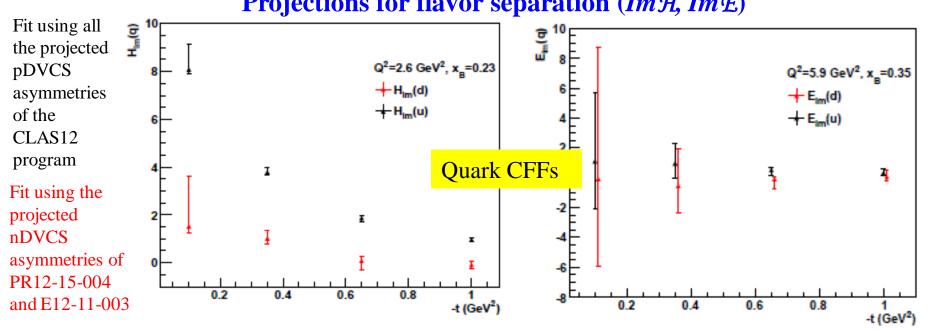
The most sensitive observable to the GPD E


E12-11-003: BSA for DVCS on the neutron with CLAS12

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4(H,E)_{p}(\xi,\xi,t) - (H,E)_{n}(\xi,\xi,t) \Big]$$

 $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathbf{E} \} d\phi$

$$(H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \Big(H,E \Big)_{n}(\xi,\xi,t) - \Big(H,E \Big)_{p}(\xi,\xi,t) \Big]$$


The most sensitive observable to the GPD E

DVCS: global view

Observable	Target	Sensitivity	Completed	12-GeV
(target)		to CFFs	experiments	experiments
$\Delta \sigma_{beam}(\mathbf{p})$	Unpolarized hydrogen	$\Im m \mathcal{H}_p$	Hall A, CLAS	Hall A, CLAS12,Hall C
BSA(p)	Unpolarized hydrogen	$\Im m \mathcal{H}_p$	HERMES, CLAS	CLAS12
TSA(p)	Long. pol. NH3	$\Im m \mathcal{H}_p$, $\Im m \mathcal{H}_p$,	HERMES, CLAS	CLAS12
DSA(p)	Long. pol. NH3	$\Re e \mathcal{H}_p$, $\Re e \mathcal{H}_p$	HERMES, CLAS	CLAS12
tTSA(p)	Transv. pol. protons	$\Im \mathcal{H}_p$, $\Im \mathcal{E}_p$	HERMES	CLAS12
$\Delta \sigma_{beam}(\mathbf{n})$	Unpolarized deuterium	$\Im m \mathcal{E}_n$	Hall A	
BSA(n)	Unpolarized deuterium	$\Im m \mathcal{E}_n$		CLAS12
TSA(n)	Long. pol. ND3	$\Im m \mathcal{H}_n$		PR12-15-004
DSA(n)	Long. pol. ND3	$\Re \mathcal{H}_n$		PR12-15-004

Projections for flavor separation ($Im\mathcal{H}$, $Im\mathcal{E}$)

Conclusions

- > GPDs are a unique tool to explore the **internal dynamics of the nucleon**:
 - 3D quark/gluon imaging of the nucleon
 - orbital angular momentum carried by quarks
- > Their extraction from experimental data is very difficult:
 - there are 4 GPDs for each quark flavor
 - they depend on 3 variables, only two (ξ, t) experimentally accessible via DVCS
- ✓ Recently-developed fitting methods allow to **extract CFFs from DVCS observables.** Need to measure several **p-DVCS** and **n-DVCS observables** over a **wide phase space**
- ✓ A wealth of **new results** on various DVCS observables is coming from recent **CLAS** and **Hall-A** experiments (on the proton, deuterium and ⁴He targets)
- ✓ First tomographic interpretations of the quarks in the proton:
 - ✓ valence quarks are concentrated in its center, sea quarks at its perifery
 - ✓ axial charge more concentrated than the electric one
- \rightarrow The 12-GeV-upgraded JLab will be the only facility to perform DVCS experiments in the valence region, for Q² up to 11 GeV
- → DVCS experiments on both **proton** and **deuterium** targets (polarized and unpolarized) are planned for 3 of the 4 Halls at JLab@12 GeV: quarks' spatial densities, quark-flavor separation, quarks' orbital angular momentum...
- → Beyond DVCS: double DVCS (x dependence), TCS, exclusive meson production, ...