WG 4 @ DIS2016: Heavy Flavours (Charm, Beauty and Top)

Misha Lisovyi, Martijn Mulders, Maximilian Stahlhofen

Overview of HF session

- 41 talks
- 2 talks with "DIS" in the title 🖴
- This talk: 40 x 15 min → 20 min (compression factor of 30).

Theo Exp

- Disclaimer: only a biased selection of some results. ⇒ Apologies, if your results are included in the summary
- See also the Top plenary talk by O. Iorio.

Top Physics

Top quark production at 13 TeV

- Evolution with centre-of-mass energy well understood (at <u>NNLO</u> precision)
- ttbar measurements approach theoretical uncertainty

Latest results at 13 TeV, not yet included in plots: *t-channel:* Brucherseifer, Caola, Melnikov

Top theory predictions : state of the art

ttbar Charge Asymmetry (cf A_{FR})

\rightarrow Poyraz (CMS)

CMS I+jets at 8 TeV, with Matrix Element method

- SUSY hiding in ttbar would look like "uncorrelated" ttbar…
- But: not seen in other spin correlation measurements

\rightarrow Poyraz (CMS) , Khanov (ATLAS) **tt+Z/W**

- tt+W/Z established at 13 TeV
- expect large sample in Run2
- ttZ allows to probe directly ttZ coupling and place EFT constraints (here 8 TeV)

→ Bender → Spannagel Top Mass from full reconstruction

Most precise results in lepton+jets channel:

Summary of LHC top mass measurements

Also exploring alternative methods and observables :

Summary of LHC top mass measurements

(alternative observables)

Mass measurements from single top

Or: inclusive cross-section

Steinhauser

$$m_t^{\text{OS}} = m_t^{\text{MS}} \begin{bmatrix} 1 + 0.4244 \,\alpha_s + 0.8345 \,\alpha_s^2 + 2.375 \,\alpha_s^3 + (8.49 \pm 0.25) \,\alpha_s^4 \end{bmatrix}$$

= 163.643 + 7.557 + 1.617 + 0.501 + (0.195 ± 0.005) GeV
$$m_b^{\text{OS}} = m_b^{\overline{\text{MS}}} \begin{bmatrix} 1 + 0.4244 \,\alpha_s + 0.9401 \,\alpha_s^2 + 3.045 \,\alpha_s^3 + (12.57 \pm 0.38) \,\alpha_s^4 \end{bmatrix}$$

= 4.163 + 0.401 + 0.201 + 0.148 + (0.138 \pm 0.004) GeV
$$m_c^{\text{OS}} = m_c^{\overline{\text{MS}}} (3 \text{ GeV}) \\ \times (1 + 1.133 \,\alpha_s + 3.119 \,\alpha_s^2 + 10.98 \,\alpha_s^3 + (51.29 \pm 0.52) \,\alpha_s^4) \\$$
 = 0.986 + 0.286 + 0.202 + 0.182 + (0.217 \pm 0.002) \text{ GeV}

Preliminary estimate for residual renormalon uncertainty of top mass:

$$m_t^{\text{OS}} = m_t^{\overline{\text{MS}}} \left(1 + \sum_{k=1}^4 r_{k-1} \alpha_s^k \right) + \delta^{(5+)} m_t^{\text{OS}}$$

 $\delta^{(5+)}m_t^{OS} = 0.2xx_{-0.02}^{+0.04}(N) \pm 0.07$ (last term) GeV

⇒ final uncertainty about (below?) 100 MeV!

[MSbar – thr. mass (1S,PS,RS) relation well under control $\sim 10(5) {
m MeV}$ for top(bottom)!]

Top mass calibration for MC

Quarkonia + Exotics

Quarkonia production at 13 TeV

- Differential cross-sections of $\psi(nS)$ vs pT in 4 rapidity bins
- Extending up to 100 GeV
- Look at ratio 13 TeV / 7 TeV

Ref. CMS BPH-15-005

WG4 convenors

Quarkonia production: prompt vs non-prompt

- Measurement of the differential non-prompt J/ ψ fraction
- Fraction increases with p_τ
- Checked in 3 bins of rapidity: no significant change
- Some dependence on \sqrt{s} and initial state is observed

 \rightarrow Maevskiv

 \rightarrow Cheatham

Quarkonium Production

Quarkonium Production

Exotic Quarkonium States X, Y, Z

- Many results on X, Y, Z states from BESIII since 2013
- Observation (5.1 σ) of new B_s π^{\pm} state by DZERO
- ATLAS: study of X(3872) in progress; search for / no evidence of Xb

Charm & Beauty Physics

Charmed Meson Production

Charm hadrons

Charm hadroproduction in the atmosphere

Moch

- Cosmic rays + atmospheric nuclei → hadrons → neutrinos + X
 - background in neutrino astronomy (astrophysical/DM sources)
 - conventional neutrino flux (from decay of $\pi^{\pm}, \, \mathsf{K}^{\pm}$)
 - prompt neutrino flux from charmed and heavier hadrons
 - 1st step: pp-collisions at high energy:

bbH production

Λ_{c} branching fractions

Full sample of $\Lambda_c \Lambda_c$ events from BESII. Precision of $B(\Lambda_c \rightarrow pK\pi)$ is comparable with BELLE and superior to PDG2015.

Z. Yu

Charm CPV

- Also for decays via K.
- Usage of GPU's for extraction of mixing parameters in BABAR.

- First mixing observation in $D^0 \rightarrow K^+ \pi^+\pi^-\pi^-$
- $r_D^{K3\pi}$, $R_{WS}^{K3\pi}$ and $y'_{K3\pi}$ were extracted.

- ATLAS is consistent with the SM, LHCb and CMS.
- Room for NP destructively interfering with the SM.

Charm mass from Hera

Bertone

- Charm production in DIS directly sensitive to m
- precise Hera data
- new VFNS (FONLL) for Msbar masses implemented in APFEL

 $m_c(m_c) = 1.335 \pm 0.043(\exp)^{+0.019}_{-0.000}(\operatorname{param})^{+0.011}_{-0.008}(\operatorname{mod})^{+0.033}_{-0.008}(\operatorname{th}) \text{ GeV}$

3-Loop Heavy Flavor Corrections to DIS

- "heavy" calculation
- uses new technologies (e.g. differential eqs. for MIs)
- Wilson coefficients expressed in terms of heavy quark OMEs
- 6 out of 7 OMEs computed!
- Last OME $A_{Qg}^{(3)}$ partially known, WIP...

No summary in summary...

Theory and experiment

