J/ψ in UPC @ STAR

W. Schmidke, BNL For the STAR Collaboration DIS2016 DESY, Hamburg

- Ultra Peripheral Collisions (UPC)
- New results: UPC J/ ψ in AuAu
 - STAR detector, data selection
 - J/ψ signal
 - cross sections vs. rapidity: model comparison
- Future studies: UPC J/ ψ in polarized p \uparrow p \uparrow , p \uparrow Au
 - Generalized Parton Distributions (GPDs)
 - Access to GPD $E_a \sim gluon orbital L_a$
 - STAR Romans pots: final state proton measurement
 - Estimates for future RHIC runs: √s=500 GeV p↑p↑ (2017) √s=200 GeV p↑Au (202?)

Ultra Peripheral Collisions

- High-Z nucleus, high flux Weizsaeker-Williams photons
- Photoproduction on other nucleus,
 - typically VM production:
 - J/ ψ production sensitive to Au gluon content
- Photoproduction can occur:
 - coherently off whole nucleus (large size, low p_{τ})
 - incoherently, off individual nucleons (small size, high p_{τ})
- Also: Coulomb excitation of nuclei, forward neutron production
 - ~10% total cross section
 - forward neutrons helpful for triggering

A11

- Models: cross section estimates, acceptance corrections
 - Starlight: WW flux, Glauber photonuclear cross section, inclusive Coulomb excitation
 - RELDIS: estimates of #neutron spectra

STAR detector, data selection

TPC: slow detector, many bunch ×ings

TOF: fast detector, trigger bunch

BBC: forward scint. around beam

Magnet

ZDC: $\pm 18m$ from IP 0° calorimeters, forward neutrons

<u>Data set:</u> RHIC 2010,2011 L = 1.9 nb⁻¹

- <u>Trigger:</u>
 2-6 hits in TOF (low mult. event)
- each ZDC #neutrons \geq 1 (define real event) & < 5 (not hadronic)
- veto BBC (reject hadronic central collisions)
 <u>Offline selection:</u>
- 2 tracks \geq 15 hits in TPC (of 45 possible, well reconstructed)
- Tracks match hits in TOF (trigger requirement, in-time tracks)
- Vertex in STAR center, 2 or 3 tracks (low mult. event)
- Reject pair rapidity |y|<0.02 (cosmics)

Pair mass, p_{τ} distributions

• Selections give sample of $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$:

- m_{ee} proxy for pair mass, m_{uu}-m_{ee} < 10 MeV/c²
- Band near p₊~0:
 - coherent J/ ψ , continuum $\pi^{+}\pi^{-}$, QED e⁺e⁻, $\mu^{+}\mu^{-}$
- Band near m_{ee}~m_{J/ψ}:
 coherent & incoherent J/ψ

- ↓ indicate J/ψ mass peak, side bands
- Subtractions for J/ ψ signal:
 - (opposite sign pairs) (like sign)
 - (peak) (side bands)

Cross section vs. rapidity

Measured for coherent region p₁<0.15 GeV/c

- Physics distribution dσ/dy symmetric under y↔-y (symmetric beams)
 Boost stat. significance: events y<0 binned |y|>0, total counts halved
- Cross section falls slowly for 0<y<1, as Starlight:</p>
- Cross section factor ~2½ lower than Starlight + RELDIS XnXn→4n4n correction
 - uncertainties in Starlight Coulomb excitation
 - uncertainties in RELDIS #neutron spectra

Cross section vs. p_{τ}

Measured for |y|<1 (STAR acceptance)

• Cross section for $p_{\tau} > 0.5$ GeV/c consistent with zero

- Starlight coherent normalized to data @ p_{τ} < 0.15 GeV/c
 - \Rightarrow dominant coherent component
- Significant incoherent component $p_{T} > 0.15$ GeV/c
 - ~30% of total signal

Summary & outlook: UPC J/ ψ in AuAu

Results so far:

- Clear UPC J/ψ signal
- Cross section ~2½ lower than Starlight/RELDIS expectation
- Rapidity distribution ~flat as expected
- Dominant coherent (low p_{τ}) component, plus ~30% incoherent

Looking ahead (beyond ~200 events here):

- RHIC Run14 data processed soon:
 - ~75% identical data sample
 - new EM calor. trigger for $J/\psi \rightarrow e^+e^-$, ~3½ larger sample
- Current RHIC Run16:
 - EM trigger quiet, drop neutron requirement, factor ~10 in σ
 - factor ~10 increase total luminosity, but lost $1\!\!\!/_2 \; J/\psi {\rightarrow} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
 - \Rightarrow factor ~30-50 larger data sample coming
- Enable:
 - better cross section comparison, models w/o Coulomb dissociation
 - finer study of p_{τ} distribution: coherent/incoherent, diffractive peaks?

Generalized Parton Distributions

polarized

- GPDs: Correlated quark momentum and helicity distributions in transverse space
- Access to:
 - 3D imaging of proton
- q & g orbital angular momentum L_a & L_a
- GPDs characterized, for each q,g:

conserve nucleon helicity $\rightarrow H^q(x,\xi,t) \quad \tilde{H}^q(x,\xi,t)$

flip nucleon helicity $\rightarrow E^q(x,\xi,t) \quad \tilde{E}^q(x,\xi,t)$

• Spin Sum Rule:
$$\frac{1}{2} = J_q^z + J_g^z = \frac{1}{2}\Delta\Sigma + \sum_q \mathcal{L}_q^z + J_g^z$$
$$J_{q,g}^z = \frac{1}{2} \left(\int_{-1}^1 x \, dx \left(H^{q,g} + E^{q,q} \right) \right)_{t \to 0}$$

unpolarized

The GPDs E^{q,g} responsible for orbital angular momentum

Generalized Parton Distributions

Measure GPDs through exclusive reactions

- We don't have an Electron Ion Collider yet
- But we can explore at RHIC:
 - VM production in Ultra Peripheral Collisions (UPC)
 - with polarized protons

UPC with polarized p[↑]

- WW photon from one beam particle
- Target particle polarized proton $p\uparrow$:
 - $d\sigma/d\phi \propto (1 + A_{UT} \cdot \cos\phi)$, $\phi = J/\psi$ azimuthal angle w.r.t. p⁺
 - measure J/ ψ transverse asymmetry A_{UT} (Unpolarized beam γ , Transverse polarized target p \uparrow)

•
$$A_{UT}$$
 calculable with GPDs:
 $A_{UT}(t,t) \sim \frac{\sqrt{t_0 - t}}{m_n} \frac{\text{Im}(E^*H)}{|H|} = t = \frac{M_{J/Y}^2}{s}$

 $A_{UT} \propto E_g \Rightarrow$ sensitive to gluon orbital angular momentum L_g

<u>Scales:</u>

- This is photoproduction, with Q²~0
- But for VM the resolution scale is $Q^2 + M_V^2 \sim 10 \text{ GeV}^2$

• Similarly, longitudinal momentum scale $\xi = x_v/(2-x_v), x_v = x_B \cdot (1 + M_v^2/Q^2), x_B = usual Bjorken x$

 t_1

to

p1

 J/Ψ

STAR capabilities for p1: Roman Pots

• Already discussed calorimeter trigger for $J/\psi{\rightarrow}e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$

Also for p[↑], STAR has Roman Pot system: tag/measure scattered p:

 Silicon strip detectors, x&y strips, 15-17m from IP

 Approach above/below beam to ~20mm ~50% azimuth acceptance

Setup has evolved

- 2009 Phase-I: detectors farther from IP, lower |t|
- 2015 Phase-II*: detectors closer, larger |t| range, increased acceptance
- 202? Phase-II: increased acceptance

J/ψ in p $p \downarrow UPC$

- Planned: √s=500 GeV p↑p↑ Run17 L~400 pb⁻¹
- Trigger on:
 - 2 EM showers STAR calorimeters $(J/\psi \rightarrow e^+e^-)$
 - Hit in either Roman Pot
 - no BBC activity (ensure diffractive)
- Events rates estimated w/ Sartre:
 - VM production & DVCS based on bSat color dipole model
 - designed for ep, eA; extended w/ WW flux to pp, pA
- RP measures 0.19<|t|<1.9 (GeV/c)²; detect either/both protons from:
 - source of photon (lower |t|)
 - target of photon (higher |t|)
- $J/\psi \rightarrow e^+e^-$ in STAR EMC:

RHIC plans: Spin arXiv:1501.01220 Cold QCD arXiv:1602.03992

J/ψ in p†Au UPC

- Considered: √s=200 GeV p↑Au Run 202? L~1.75 pb⁻¹ (already had p↑Au 'test run' 2015, L~0.14 pb⁻¹)
- Here 2 processes:

- Au photon source, p↑ target • Boost in photon flux $\propto Z_{Au}^{2}$
- Polarized target:

measure
$$A_{UT} \propto E_{g}$$

- p↑ photon source, Au target
- Boost in γA cross section $\propto A_{Au}^{2}$ (coherent)
- Unpolarized target: no asymmetry

J/ψ in pAu UPC

- Trigger on:
 - 2 EM showers STAR calorimeters $(J/\psi \rightarrow e^+e^-)$
 - Hit in Roman Pot facing p↑ beam
 - no BBC activity (ensure diffractive)
- Events rates estimated w/ Sartre
- RP measures 0.03<|t|<0.3 (GeV/c)²; detect either proton from:
 - source of photon, Au target mostly below RP |t| range
 - target of photon, Au source mostly in RP |t| range

Outlook: J/ ψ in pp, pAu UPC

- Next year 2017: large sample √s=500 GeV p↑p↑
- Considered for 202?: large sample √s=200 GeV p↑Au (and small (1/10) test sample from 2015 analyze soon)

With UPC J/ ψ on polarized p \uparrow :

- Through asymmetry $A_{u\tau}$ access to GPD $E_a \propto$ gluon orbital L_a
- Non-zero A_{UT}
 - \Rightarrow non-zero E
 - \Rightarrow non-zero gluon orbital angular momentum
- First look at this before EIC

Kinematic ranges

