

Results of Radiative & Annihilation Penguin B Decays at Belle

Deepanwita Dutta

Email: <u>deepanwita.dutta@tifr.res.in</u> (On Behalf of Belle Collaboration)

Department of High Energy Physics Tata Institute of Fundamental Research, India

International Workshop On Deep-Inelastic Scattering

DIS 2

DESY, Hamburg

Date : 12.4.2016

 $b \rightarrow s.d$ transitions: FCNC process, forbidden at tree level in the SM.

- Sensitive to new physics.

BELLE

Observables such as BF, A_{CP} , A_{FB} , Isospin asymmetry could be modified by the presence of new physics.

 Sensitive to electromagnetic Wilson coefficient C₇. (Rev. Mod. Phys. 68, 1125 Buchalla, Buras and Lautenbacher)

$$B(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5 |Vts V_{tb}|^2}{34\pi^4} |C_7^{\text{eff}}|^2 + \cdots$$

- A measurement of $B_s \rightarrow \gamma\gamma$ could be a useful test of hadronic dynamics. (JHEP 08, 054 (2002) S.W. Bosch and G. Buchalla)

DIS 2016

Currently, KEKB and Belle is being upgraded to SuperKEKB & Belle11, SuperKEKB to collect ~50 times the current data.

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

CP asymmetry measurements in inclusive $B \rightarrow X_{s+d}\gamma$

$$A_{CP} = \frac{\Gamma(\overline{B} \to X_{s,d}\gamma) - \Gamma(\overline{B} \to X_{s,d}\gamma)}{\Gamma(\overline{B} \to X_{s,d}\gamma) + \Gamma(\overline{B} \to X_{s,d}\gamma)} = \frac{N^+ - N^-}{N^+ + N^-}$$

SM Expectations and Recent Results

- ► CP asym. measurements in $B \to X_s \gamma$, $B \to X_d \gamma$ & $B \to X_{s+d} \gamma$ are in agreement with SM. $A_{CP}(B \to X_{s+d} \gamma) - CLEO PRL 86, 5661 (2001), Babar PRD 86, 112008 (2012)$ $A_{CP}(B \to X_s \gamma) - Belle PRL 93, 031803(2004), Babar PRD 90, 092001 (2014)$
- ➤ In A_{CP}(B→ X_{s+d}γ), X_sγ and X_dγ almost completely cancels due to CKM matrix unitarity. SM prediction : A_{CP}(B→ X_{s+d}γ) ~ 10⁻⁹ only due to U-spin breaking effects.

▶ New physics such as SUSY with minimal flavour violation predict $A_{CP}(B \rightarrow X_{s+d}\gamma)$ upto a level of +2%.

CP asymmetry measurements in inclusive $B \rightarrow X_{s+d}\gamma$

Analysis Results

 $A_{CP} = \frac{N^+ - N^-}{N^+ + N^-} = (2.2 \pm 3.9 \pm 0.9)\%$ for $E_{\gamma}^* > 2.1$ GeV, consistent with SM prediction.

Background subtracted E_{γ} spectrum in the C.M. system.

Belle, PRL 114, 151601 (2015)

DIS2016. DESY

DIS 2016

CP asymmetry measurements in inclusive $B \rightarrow X_{s+d}\gamma$

Belle, PRL 114, 151601 (2015)

DIS2016. DESY

Analysis Results and Summary

Summary :

- \blacktriangleright Most precise measurement of A_{CP}
 - Statistically dominated
 - Leading systematic comes from BB background asymmetry
- Consistent with SM and other experiments.

DIS 2016 11-15 APRIL 2018

SM Expectations and Recent Results

> SM calculations : Theory calculation at NNLO

 $B_{SM}(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ for $E_{\gamma} > 1.6$ GeV (PRL 98, 022002, 2007 M. Misiak et. al.)

Experimental Average

BELLE

 $B(B \rightarrow X_s \gamma) = (3.43 \pm 0.20) \times 10^{-4} \text{ (PDG 2014)}$

Two-sided 68%, 95% and 99% CL exclusion region in the 2HDM parameter plane M_{H}^{-} versus tan β

 $M_{Xs} < 2.8 \text{ GeV}$

Reconstruct as many modes as possible to minimize the systematic uncertainty from the hadronization model in the MC.

38 modes reconstructed.

 $\mathbf{X}_{\mathbf{s}}$ mass distribution

Belle, PRD 91, 052004 (2015)

DIS2016. DESY

Belle, PRD 91, 052004 (2015)

DIS2016. DESY

S B \rightarrow X_s γ BF with Semi Incl. Reconstruction Method

Analysis Results

Partial branching fraction as a function of M_{Xs}

----- Statistical ----- Statistical + Systematic

Branching Fraction :

 $\mathcal{B}(\bar{B} \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$ for $E_{\gamma}^* > 1.8$ GeV and $0.6 \le M_{Xs} \le 2.8$ GeV/c²

Extrapolated branching fraction to 1.6 GeV : $\mathcal{B}(\bar{B} \rightarrow X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4}$

DIS 2016

Analysis Results

Source	Systematic Uncertainty (%)
BB counting	1.37
Detector Response	2.98
Background Rejection	3.38
M _{bc} PDF	5.06
Hadronization Model	6.66
Missing mode	1.59
Total	9.3

Systematic Uncertainties

DIS 2016

Analysis Results and Summary

New PDG 2015 Average

 $\begin{aligned} \mathcal{B}(\bar{B} &\to X_s \gamma) \\ &= (3.49 \pm 0.19) \times 10^{-4} \end{aligned}$

Summary : Results consistent with SM and other experiments.

SM Expectations and Recent Results

> SM calculations

 $B_{SM}(B\to\phi\gamma)=10^{\text{-}12}-10^{\text{-}11}$, extremely suppressed.

(EPJC36, 97 (2004), EPJC69, 139 (2010), Chin. Phys. Lett. 23, 2684 (2006))

Previous Results

 $B(B \rightarrow \phi \gamma) < 8.5 \times 10^{-7}$ (PRD 72, 091103(2005), Babar experiment)

The Analysis

711 fb⁻¹ Υ (4S) data \cong 772 \times 10⁶ B \overline{B} pairs.

• A loose cut is applied on the classifier output (C_{NB}) and C'_{NB} calculated.

$$C'_{NB} = \log \left[\frac{(C_{NB} - C_{NB,cut})}{(C_{NB,max} - C_{NB})} \right]$$

• 4D extended maximum likelihood fit performed.

Belle, arXiv:1603.0654[hep-ex], Submitted to PRD

Summary : Found no evidence for $B \rightarrow \varphi \gamma$. Provided most stringent upper limit till date.

Belle, arXiv:1603.0654[hep-ex], Submitted to PRD

SM Expectations and Recent Results

> SM calculations

$$\begin{split} B_{SM}(B_s \to \phi \gamma) = (3.9 - 4.3) \times 10^{-5} \text{ with around 30 \% uncertainty} \\ (PRD 75, 054004 \ (2007), EPJC 55, 577-595 \ (2008), PRD 85, 014008 \ (2012)) \end{split}$$

B_{SM}(B_s $\rightarrow \gamma \gamma$) = (0.18 – 2.45) × 10⁻⁶ (PRD 56, 9 (1997), JHEP 08 (2002) 054, PLB 415: 395, 1997, PRD 85, 014008 (2012))

Previous Results

$$B(B_{s} \rightarrow \varphi \gamma) = \left(5.7^{+1.8}_{-1.5} (stat.)^{+1.2}_{-1.1} (syst.)\right) \times 10^{-5} (PRL \ 100 \ 121801(2008), Belle)$$

$$B(B_{s} \rightarrow \varphi \gamma) = (3.5 \pm 0.4) \times 10^{-5} (NPB \ 867, 1 \ (2013), LHCb)$$

$$B(B_{s} \rightarrow \gamma \gamma) < 8.7 \times 10^{-6} (PRL \ 100 \ 121801(2008), Belle)$$

Summary: B_s→φγ BF is in agreement with SM prediction and recent experimental results.
 Found no evidence for B_s→γγ and put the stringent upper limit till date.

Belle, PRD 91, 011101(R)(2015)

- > Put stringent upper limits and made precise BF measurements.
- ► Results:
 - $\mathcal{B}(\bar{B} \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4} (E_{\gamma}^* > 1.8 \text{ GeV})$
 - $A_{CP}(B \rightarrow X_{s+d}\gamma) = (2.2 \pm 3.9 \pm 0.9)\%$
 - $\mathcal{B}(B \to \varphi \gamma) < 1.0 \text{ X } 10^{-7}$ (90% C.L.)
 - $\mathcal{B}(B_s \to \phi \gamma) = (3.5 \pm 0.5(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.6(f_s)) \times 10^{-5}$
 - $\mathcal{B}(B_s \to \gamma \gamma) < 3.1 \text{ X } 10^{-6}$ (90% C.L.)

Thank You...

DIS 2016

Thank You

BackUp

Reconstructed Final States

Reconstructed final states				
$K\pi$	$K\pi$	$K_s \pi$	$K\pi^{0}$	$K_s \pi^{0}$
$K2\pi$	Κππ	$K_s \pi \pi$	$K\pi\pi^{0}$	$K_s \pi \pi^0$
$K3\pi$	Κπππ	$K_s \pi \pi \pi$	$K\pi\pi\pi^0$	$K_s \pi \pi \pi^0$
$K4\pi$	Κππππ	$K_s \pi \pi \pi \pi$	$K\pi\pi\pi\pi^0$	$K_s \pi \pi \pi \pi^0$
3 K	KKK	KKK _s		
	$KKK\pi$	$KKK_s\pi$	$KKK\pi^{0}$	$KKK_s\pi^0$
Κη	$K\eta$	$K_s \eta$	$K\eta\pi$	Ks $\eta\pi$
	$K\eta\pi^{0}$	$K_s\eta\pi^0$	$K\eta 2\pi$	$K_s \eta 2 \pi$
	$K\eta\pi\pi^0$	$K_s \eta \pi \pi^0$		
$2\pi^{0}$	$K\pi^0\pi^0$	$K_s \pi^0 \pi^0$	$K\pi\pi^{0}\pi^{0}$	$K_s \pi \pi^0 \pi^0$
	$K\pi\pi\pi^{0}\pi^{0}$	$K_s\pi\pi\pi^0\pi^0$		

 $\frac{1}{B \to X_s \gamma BF \text{ with Semi Incl. Reconstruction Method}}$

DIS 2016 11-15 APRIL 2016

Photon energy should be monochromatic. However, it is smeared by:

- the Fermi motion of the b quark inside the B meson.
- the QCD corrections.
- the non-zero momentum of the B meson.
- the detector resolution.

The γ energy spectrum & the X_s mass distribution are produced following a Kagan-Neubert model (Eur. Phys. J. C 7:5-27, 1999). The parameters m_b and m_π are taken from the theoretical spectrum having the best fit with the previous Belle fully inclusive result. (m_b = 4.440 GeV/c², m_π² = 0.750 GeV²)

 \mathbf{X}_{s} mass distribution