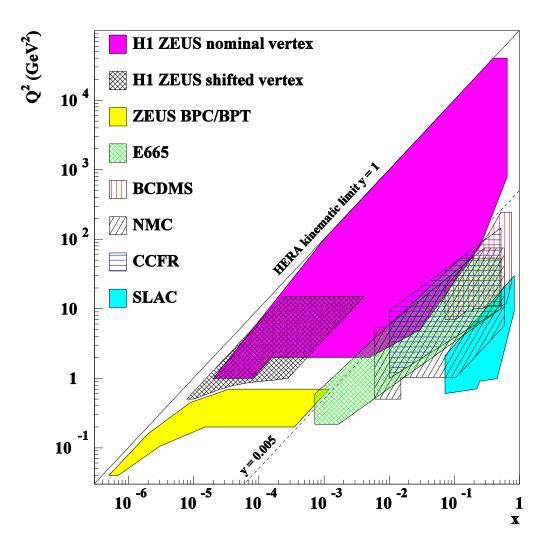
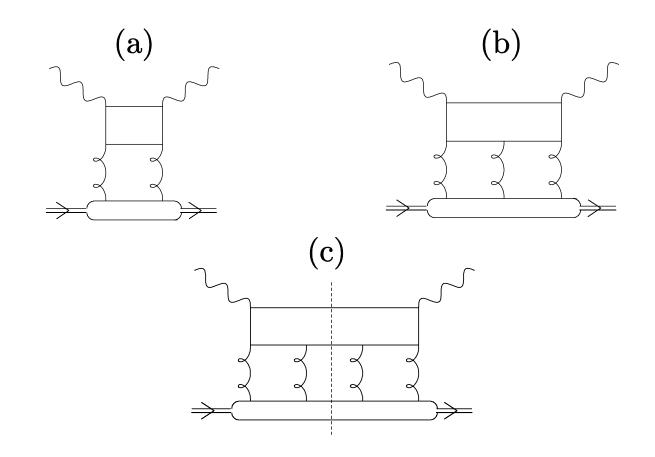

A study of HERA I+II combined data at low Q²

I Abt, A Cooper-Sarkar, B Foster, V Myronenko, K Wichmann, M Wing DIS2016


A study of adding higher twist terms to the HERAPDF2.0 analysis of the HERA-I+II data for NLO and NNLO fits

Higher twist terms are important in F_L for low Q², which for HERA kinematics means at low-x

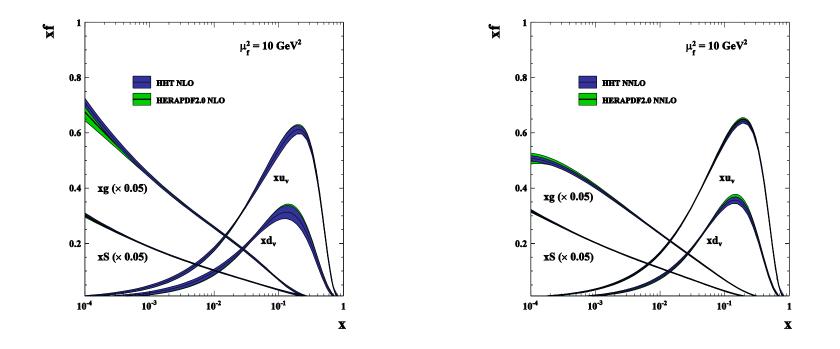

Such terms are significant in F_L for 2 < Q^2 < 50 GeV² But such an approach fails for Q^2 < 2 GeV² The χ^2 /ndof of the HERAPDF2.0 NLO and NNLO fits deteriorate as the minimum value of Q² for data entering the fit is lowered

One way to improve this is to add higher twist terms - HHT analysis BUT NOTE- these are not the high-x, low Q² contributions that we usually associate with the terminology 'higher twist' Most groups exclude those contributions by a W cut, W² > 12.5 GeV² ALL HERA data is at much higher W² > 300 GeV²

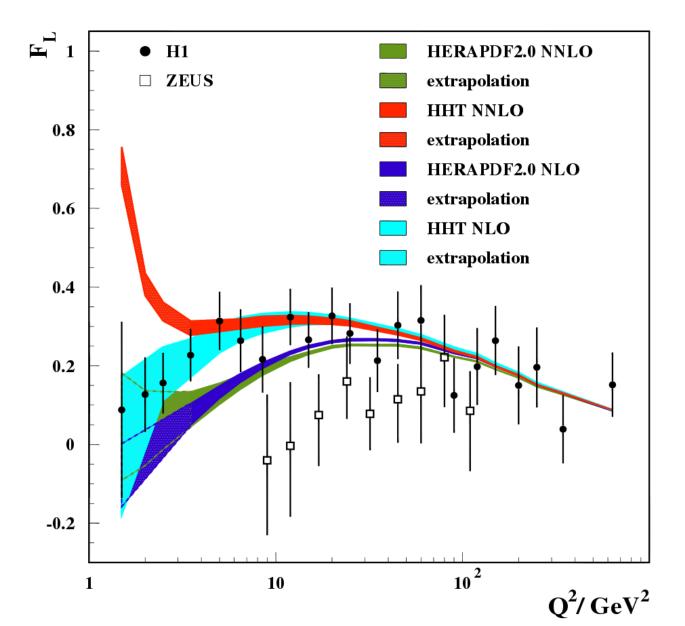
HERA data at low Q² are also at low-x

We are now considering higher twist terms which act a low-x Their origin COULD be connected with the recombination of gluon ladders. Bartels, Golec-Biernat, Kowalski suggest that such higher twist terms would cancel between σ_L and σ_T in F_2 , but remain strong in F_L Try the simplest of possible modification to the structure functions F_2 and F_L as calculated from HERAPDF2.0 formalism $F_2 = F_1 - F_2 - F_2 - F_1 + A_1 + F_2 + F_2 - F_2 + F_2 +$

 $F_{2,L} = F_{2,L} (1 + A_{2,L}^{HT}/Q^2)$


We find that such a modification of F_L is favoured, whereas for F_2 it is not.

At NNLO the $\chi^2/ndof = 1363/1131$ for HERAPDF2.0 If A_2^{HT} is added this becomes 1357/1130 and $A_2^{HT} = 0.12 \pm 0.07 \text{ GeV}^2$ If A_L^{HT} is added this becomes 1316/1130 and $A_L^{HT} = 5.5 \pm 0.6 \text{ GeV}^2$ If both A_1^{HT} and A_2^{HT} are added the result is consistent with just adding A_1^{HT}


So now concentrating on just F_{L_1} we call these fits HHT

Fit at	with $Q_{\min}^2 = 3.5 \mathrm{GeV}^2$	HERAPDF2.0	HHT	$A_{\rm L}^{\rm HT}/{ m GeV^2}$	
NNLO	χ^2 /ndof	1363/1131	1316/1130	5.5 ± 0.6	Δx2 =-47
	χ^2 /ndp for NC e^+p : $Q^2 \ge Q^2_{\min}$	451/377	422/377		$\Delta \chi z = \pm i$
	χ^2 /ndp for NC e^+p : 2.0 GeV ² $\leq Q^2 < Q_{\min}^2$	41/25	32/25		
NLO	χ^2 /ndof	1356/1131	1329/1130	4.2±0.7	Δχ2 =-28
	χ^2 /ndp for NC e^+p : $Q^2 \ge Q^2_{\min}$	447/377	431/377		
	χ^2 /ndp for NC e^+p : 2.0 GeV ² $\leq Q^2 < Q^2_{min}$	46/25	46/25		

After HT is added the NNLO fit is better than the NLO fit A substantial part of the improvement comes from the NCe⁺p 920 data This persists even below the usual cut-off $Q^2_{min} = 3.5 \text{ GeV}^2$ NOTE: the HHT PDFs themselves barely change from HERAPDF2.0 – the higher twist modification does not affect high-scale LHC physics

The HHT fits give a larger F_L at low Q^2 for both NLO and NNLO

7

You might think that -since F_1 is related to the gluon -

$$xG(x,Q^2) \approx \frac{3}{5} 5.9 \begin{bmatrix} \frac{3\pi}{4\alpha_s} F_L(0.4x,Q^2) - \frac{1}{2} F_2(0.8x,Q^2) \end{bmatrix}$$
 Simple LO relationship gives the idea

- an easier way to obtained larger F_1 would be to drop the negative term in the gluon PDF parametrisation.

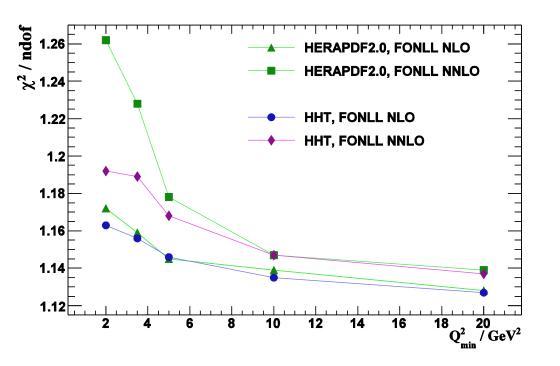
$$xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g},$$

So we did- we call this the alternative gluon (AG) parametrisation

This makes almost no difference for the NLO fits

Whereas it is strongly disfavoured for the NNLO fits.

At NNLO the fit wants a negative term in the gluon parametrization AND a higher twist term in F₁

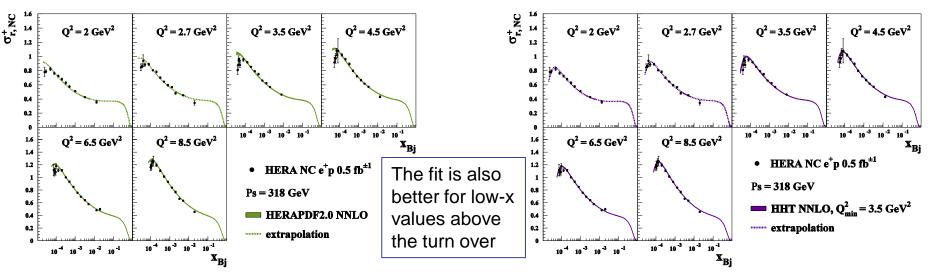

For HERAPDF2.0 AG the $\chi^2/ndof = 1389/1131$ cf 1363/1130 for the standard fit For HHT AG the $\chi^2/ndof = 1350/1130$ cf 1316/1130 for the standard fit

These two contributions clearly affect the fit in different ways

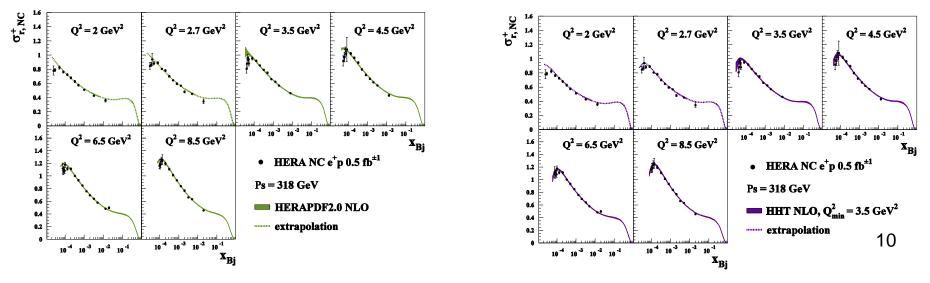
LO

Another consideration is that we know that the rate of decrease $\chi 2$ /ndof with increasing Q^2_{min} differs with the heavy flavour scheme used AND with the order in α_S to which F_L is evaluated So let's take a look at FONLL

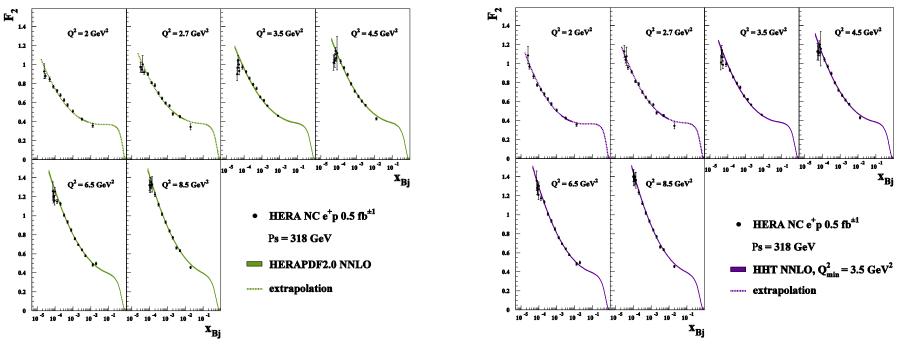
For FONLL-C at NNLO a higher twist term in F_L brings a substantial decrease in the $\chi 2/ndof~$ with a similar value of $A_L{}^{HT}$ =6.0 \pm 0.7 GeV² to that for the RTOPT scheme. For FONLL-B at NLO a higher twist term in F_L brings almost no decrease in $\chi 2/ndof$. This is probably related to the order in α_S to which F_L is evaluated


For FONLL-C/RTOPT at NNLO, F_L is evaluated to $O(\alpha_S^2)/O(\alpha_S^3)$ For FONLL-B/RTOPT at NLO, F_L is evaluated to $O(\alpha_S)/O(\alpha_S^2)$ The value of F_L at $O(\alpha_S)$ is relatively large in any scheme and thus there is little need for higher twist. However as soon as F_L is evaluated to $O(\alpha_S^2)$ or higher the need for higher twist appears

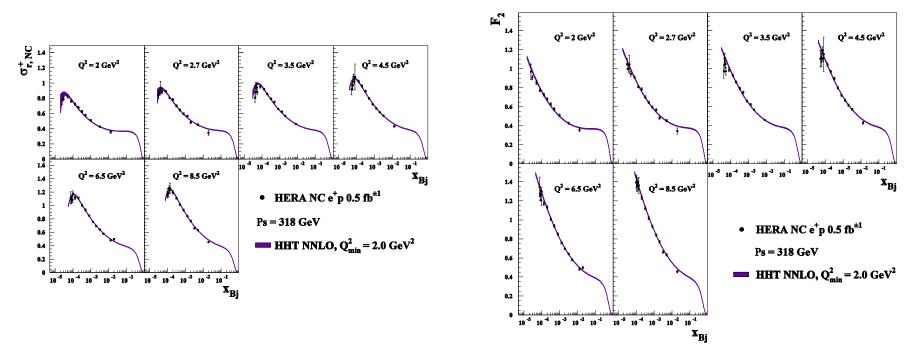
So now let's look at why the HHT fits do so well


It is because they describe the turn over of the cross section at low x, Q2 much better

$$\sigma_{\rm red} = F_2 - y^2/Y_+ F$$

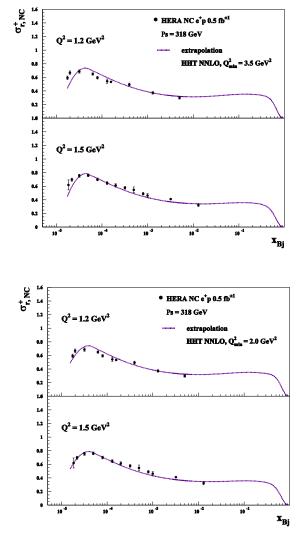

The data clearly wants a larger F_L and this is what the higher twist term provides

You can also see that NNLO does better than NLO


It is also interesting to look at F_{2} , where the data points are extracted as $F_{2}^{\text{extracted}} = F_{2}^{\text{predicted}} \sigma_{\text{red}}^{\text{measured}} / \sigma_{\text{red}}^{\text{predicted}}$ Since F_{2} is the dominant part of the reduced cross section this is a reasonable procedure

This essentially means that we get F₂ by correcting σ_{red} with our predicted F_L F₂ = σ_{red} + y²/Y₊ F_L

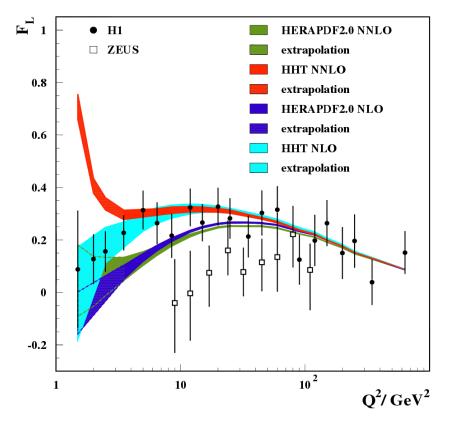
If our predicted F_L is too small the F_2 will also be too small and this is what we see in HERAPDF2.0 F_2 at low x,Q². The extracted F_2 takes a turn over! This is not what the pQCD F_2 predictions say.


If we use the HHT predictions for F_L then the F_2 extracted is much closer to the F_2 predictions– and note these F_2 predictions are very similar for HERAPDF2.0 and HHT because they depend ONLY on the very similar PDFs. 11 (The picture is similar but not quite so good for NLO- see back-up)

Looking at the extrapolations of our fits below $Q^2_{min} = 3.5 \text{ GeV}^2$ made us bold enough to extend the fit down to $Q^2_{min} = 2.0 \text{ GeV}^2$

Fit at	with $Q_{\min}^2 = 2.0 \mathrm{GeV}^2$	HERAPDF2.0	HHT	$A_{\rm L}^{\rm HT}/{ m GeV^2}$
NNLO	χ^2 /ndof	1437/1171	1381/1170	5.2 ± 0.7
	χ^2 /ndp for NC e^+p : $Q^2 \ge Q^2_{\min}$	486/402	457/402	
	χ^2 /ndp NC e^+p : $Q^2_{\min} \le Q^2 < 3.5 \text{GeV}^2$	31/25	26/25	
NLO	χ^2 /ndof	1433/1171	1398/1170	4.0±0.6
	χ^2 /ndp for NC e^+p : $Q^2 \ge Q^2_{\min}$	487/402	466/402	
	χ^2 /ndp NC $e^+p: Q^2_{\min} \le Q^2 < 3.5 \text{GeV}^2$	40/25	31/25	

Not much changes for the NNLO fit and the NLO fit improves a little See back-up



NNLO HHT F_L prediction is becoming untamed at low Q^2 - this approach cannot be pushed too far.

This comes from NNLO coefficient functions and the 1/Q² term just makes it worse

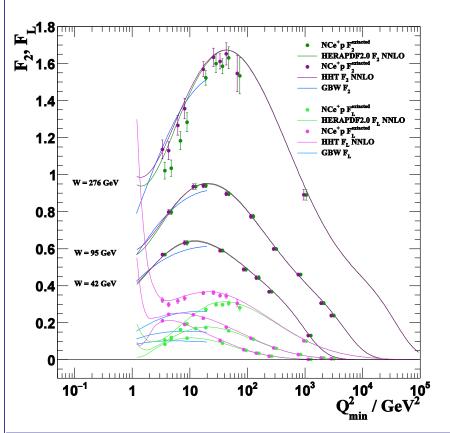
So we got even bolder and looked at lower Q²- by backward evolution

But beware...is this actually reasonable? What does FL itself look like?

Another interesting way to look at this is by looking at plots of F_2 and F_L at fixed W as a function of Q^2 (This is the Golec-Biernat Wusthoff dipole model way of looking at it)

First look at the upper three curves for F₂

Compare the HHT F_2 extracted points to the F_2 predictions – the description is good. Then compare the HERAPDF2.0 F_2 extracted points to the F_2 predictions the description is not so good.

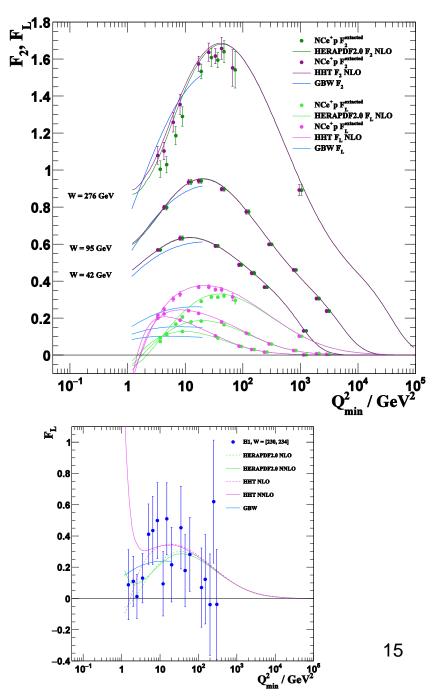

This is essentially what we saw in the F_2 curves on slide 11 but it emphasizes that the discrepancy comes at low x. Only the top curve W=276 GeV involves data at really low x

 $x = Q^2/(W^2+Q^2)$

Now look at the lower three curves for F_L

The predictions for HHT go crazy at very low Q².

In fact this upturn happens in HERAPDF as well- and it is starting to happen in F_{2} . It is a feature of the low-x coefficient functions



Here the extracted F_L points are got from $F_L^{\text{extracted}} = F_L^{\text{predicted}} \sigma_{\text{red}}^{\text{measured}} / \sigma_{\text{red}}^{\text{predicted}}$ Since F_L is not the dominant part of the reduced cross section these cannot be considered as measurements and they simply follow the predictions It is not just the NNLO F_L which is becoming unacceptable at low Q², the NLO predictions also have problems. They are becoming negative. This is not allowed for a structure function (as opposed to a PDF)

The GBW predictions at both NNLO and NLO are also compared to the extracted data points in these figures. They are broadly compatible with the HHT predictions for F_2 for $Q^2 < 10 \text{ GeV}^2$

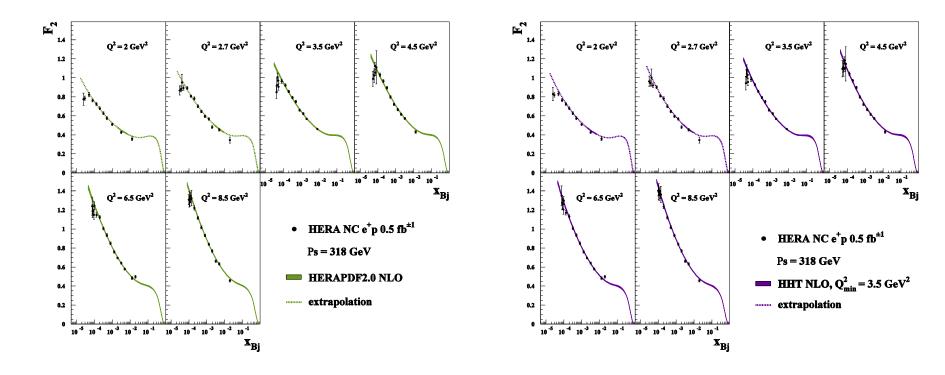
Finally we look at the FL predictions for HERAPDF2.0 and HHT at NNLO as compared to the H1 direct measurements at W= 232 GeV.

The data are able to exclude the extreme behaviour of the HHT prediction for $Q^2 < 2.0$ GeV²

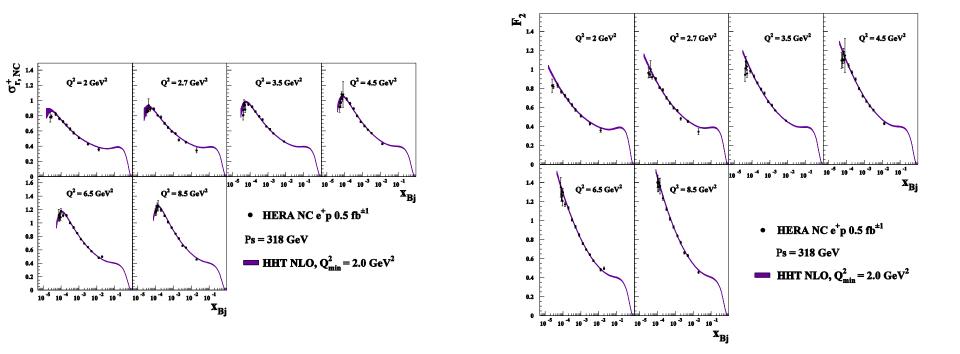
Summary

A study of adding higher twist terms to the HERAPDF2.0 analysis of the HERA-I+II data for NLO and NNLO fits

Such terms are significant in F_L for 2 < Q^2 < 50 GeV²


Improves the χ 2 significantly, and makes NNLO fits clearly better than NLO

Does not change the HERAPDF2.0 NLO or NNLO significantly- no change at higher Q²


Higher twist terms are important for low Q², which for HERA kinematics means at low-x

But such a simple approach fails for $Q^2 < 2 \text{ GeV}^2$

Back-up

And at NLO –the F2 down to Q2min=3.5

And at NLO down to Q2min=2.0