Iterative Monte Carlo analysis of spin-dependent parton distributions

(arXiv:1601.07782)

Nobuo Sato

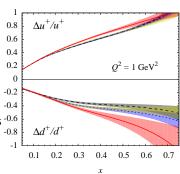
In Collaboration with:

W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi

DIS Workshop 2016

Motivations

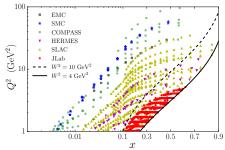
Spin structure of nucleons


- spin carried by a quark of type $q \rightarrow \frac{1}{2}\Delta q^{(1)} = \frac{1}{2}\int_0^1 dx \ \Delta q(x,Q^2)$
- spin sum rule $\rightarrow \frac{1}{2} = \frac{1}{2}\Delta\Sigma^{(1)} + \Delta g^{(1)} + \mathcal{L} \rightarrow \text{How big is } \mathcal{L}$?
- From existing global analysis $\rightarrow \Delta\Sigma^{(1)}_{[10^{-3}]} \sim 0.3$, $\Delta g^{(1)}_{[0,05]0,2]} \sim 0.1$

High x

- \blacksquare SU(6) spin-flavor symmetry: $\rightarrow \Delta u/u \rightarrow 2/3$, $\Delta d/d \rightarrow -1/3$
- \blacksquare pQCD $\rightarrow \Delta q/q \rightarrow 1$

Higher twists


- d₂ matrix element
 - $\rightarrow d_2 = 2a_1^{(3)}(Q^2) + 3a_2^{(3)}(Q^2)$
- Color forces experienced by struck quarks -0.6
 - $\rightarrow \tilde{F}_{E} = 2d_{2} + f_{2}, \quad \tilde{F}_{B} = 4d_{2} f_{2}$

Global Analysis

Data

- ✓ Polarized DIS $\rightarrow \Delta u^+, \Delta d^+$
 - Polarized SIDIS: $\rightarrow \Delta \bar{d}, \Delta \bar{u}, \Delta s$
- Inclusive Jets/ $\pi^0: \to \Delta g$
- W production $\rightarrow \Delta \bar{d}, \Delta \bar{u}$

Theory

- √ Target mass corrections
- ✓ Twist-3 and twist-4 contributions in polarized structure functions
- √ Nuclear corrections for ³He and deuteron targets
- Threshold resummation $\rightarrow (\alpha_S^m \log(1-x)^n)$

Tools

- ✓ Numerical codes developed within python framework
- ✓ Development of DGLAP evolution equations in Mellin space
- √ Fast calculation of observables → Mellin space techniques

Polarized DIS

Asymmetries

$$A_{\parallel} = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\downarrow \Downarrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\downarrow \Downarrow}} = D(A_1 + \eta A_2)$$

$$A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}} = d(A_2 - \xi A_1)$$

$$A_1 = \frac{(g_1 - \gamma^2 g_2)}{F_1} \qquad A_2 = \gamma \frac{(g_1 + g_2)}{F_1} \qquad \gamma^2 = \frac{4M^2 x^2}{Q^2}$$

Polarized structure functions

$$g_1(x, Q^2) = g_1^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, \dots) + g_1^{\text{T3+TMC}}(D_u, D_d) + g_1^{\text{T4}}(H_{p,n})$$

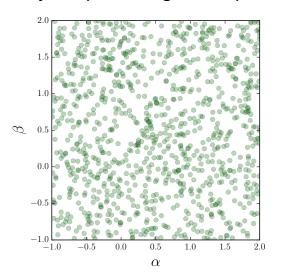
$$g_2(x, Q^2) = g_2^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, \dots) + g_2^{\text{T3+TMC}}(D_u, D_d)$$

Fitting strategy

Parametrization

- $T x f(x) = N x^{\mathbf{a}} (1 x)^{\mathbf{b}} (1 + c\sqrt{x} + dx)$
- lacksquare LT quark distributions $ightarrow \Delta u^+, \Delta d^+, \Delta s^+, \Delta g$
- lacktriangle T3 quark distributions $ightarrow D_u, D_d$
- lacktriangle T4 structure functions $ightarrow H_p, H_n$

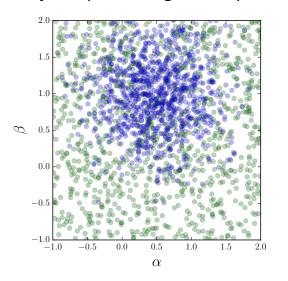
$\textbf{Chi-squared minimization} \rightarrow \text{with correlated systematic uncertainties}$


$$\chi^{2} = \sum_{i} \left(\frac{D_{i} - T_{i} (1 - \sum_{k} r^{k} \beta_{i}^{k} / D_{i})^{-1}}{\alpha_{i}} \right)^{2} + \sum_{k} (r^{k})^{2}$$

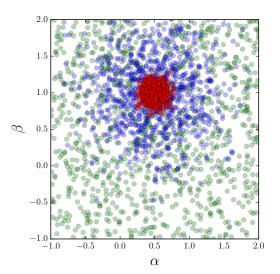
Issues

- Stability in the moments (e.g. $\Delta\Sigma^{(1)}$)
- Is the solution given by a single fit unique? → False minima
- Is over-fitting present in our fits?
- Which parameters should be fixed and at which value?
- Determination of uncertainty bands.

Solution → MC approach


Toy example \rightarrow fitting 2 model parameters α, β

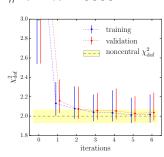
I. Flat sampling

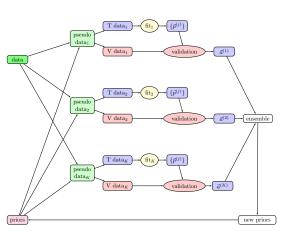

Initial priors $\{(\alpha, \beta)\}$

Toy example \rightarrow fitting 2 model parameters α, β

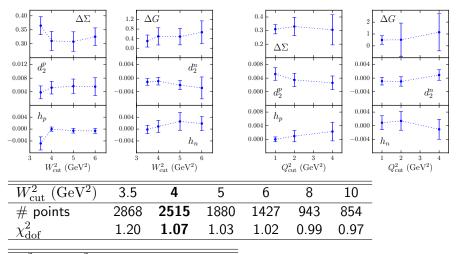
I. Flat sampling Initial priors $\{(\alpha, \beta)\}$ II. First iteration priors $\{(\alpha, \beta)\}$ posteriors $\{(\alpha, \beta)\}$

Toy example \rightarrow fitting 2 model parameters α, β

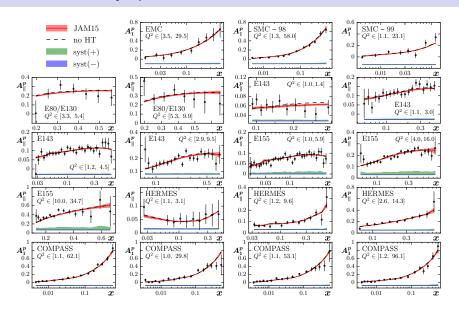



I. Flat sampling Initial priors $\{(\alpha, \beta)\}$ II. First iteration priors $\{(\alpha, \beta)\}$ posteriors $\{(\alpha, \beta)\}$ III. Second iteration priors $\{(\alpha, \beta)\}$ posteriors $\{(\alpha, \beta)\}$... until convergence

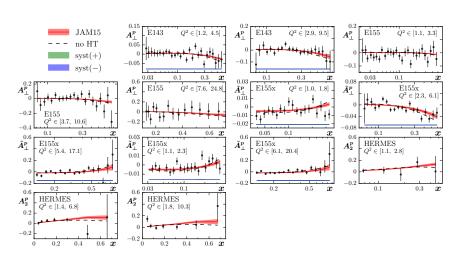
Each iteration


- Generate pseudo data sets via data resampling
- Random data partition → Training & Validation
- Fit the training set
- Validation

of fits: 10000



$W_{\rm cut}^2$ and $Q_{\rm cut}^2$



$Q_{\mathrm{cut}}^2 \; (\mathrm{GeV^2})$	1.0	2.0	4.0
# points	2515	1421	611
$\chi^2_{ m dof}$	1.07	1.08	0.95

Data vs theory: proton

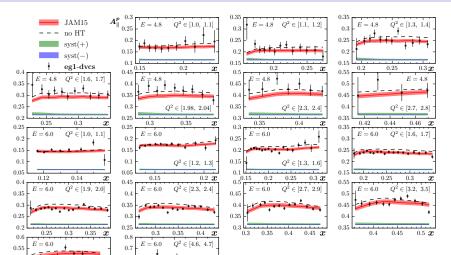
Data vs theory: proton

Data vs theory: proton JLab eg1b-dvcs

0.6

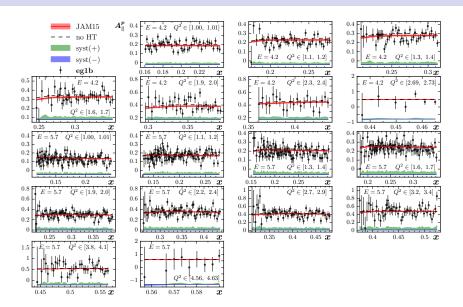
0.5

0.56

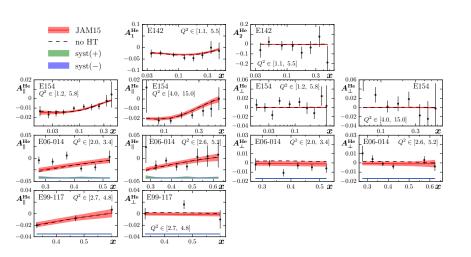

0.5

0.45

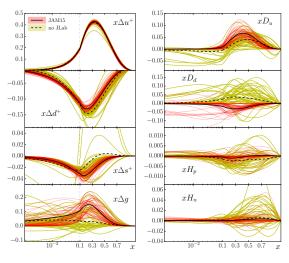
0.45


0.5

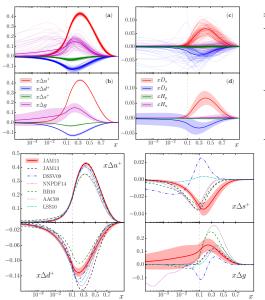
0.55 2



Signal of HT contribution.

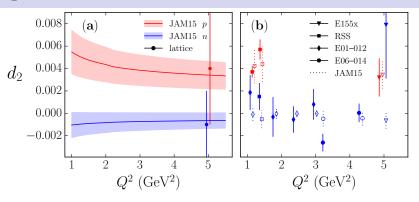

Data vs theory: proton JLab eg1b

Data vs theory: ³He

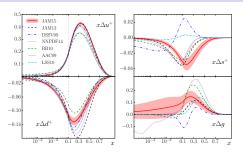


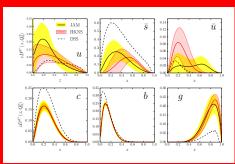
Impact of JLab data

- JLab data $\rightarrow 0.1 < x < 0.7$
- lacktriangledown Constraints on small x from large x o weak baryon decay constraints
- Large uncertainties in Δs^+ , Δg removed by JLab data
- Non vanishing T3 quark distributions
- T4 distributions consistent with zero


Results

moment	truncated	full
Δu^+	0.82 ± 0.01	0.83 ± 0.01
Δd^+	-0.42 ± 0.01	-0.44 ± 0.01
Δs^+	-0.10 ± 0.01	-0.10 ± 0.01
$\Delta\Sigma$	0.31 ± 0.03	0.28 ± 0.04
ΔG	0.5 ± 0.4	1 ± 15
d_2^p	0.005 ± 0.002	0.005 ± 0.002
$d_2^{\bar{n}}$	-0.001 ± 0.001	-0.001 ± 0.001
h_p	-0.000 ± 0.001	0.000 ± 0.001
h_n	0.001 ± 0.002	0.001 ± 0.003


- Significant constraints on Δs^+ and Δg
- Non zero T3 quark distributions
- T4 contribution to g₁ consistent with zero
- Negative ∆s⁺
- JAM15 Δg compatible with recent DSSV fits.


d_2 matrix element

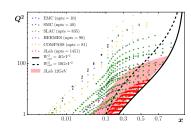
- $d_2(Q^2) \equiv \int_0^1 dx x^2 \left[2g_1^{\rm T3}(x,Q^2) + 3g_2^{\rm T3}(x,Q^2) \right]$
- lacksquare d_2 is related to "color polarizability" or the "transverse color force" acting on quarks.
- Existing measurements of d_2 are in the resonance region (contains TMC T4 and beyond.)
- Agreement with data indicates quark-hadron duality

The strange puzzle

o The sign of ΔS^+ from combined DIS and SIDIS depends on Kaon fragmentation: positive for DSS and negative for HKNS. (Leader, etal)

NEW IMC FF analysis (to be published soon)

- o Only SIA data is used : npts=245, $\chi^2=305.2$ (identical to HKNS)
- o Size of Δs^+ similar to HKNS but smaller than DSS
- o Combined DIS and SIDIS analysis unlikely to change Δs^+


JAM: Outlook

JAM

- \checkmark New JAM15 analysis to study impact of all JLab 6 GeV inclusive DIS data at low W and high x
- ✓ New extraction of LT & HT distributions
- Upcoming JAM16 analysis to study polarization of sea quarks & gluons.
 - SIDIS for flavor separation.
 - polarized pp cross sections (inclusive jet & π production) for Δg
 - W boson asymmetries
 - Threshold resummation impacts on large \boldsymbol{x}
- Combined analysis of all inclusive (un)polarized DIS data
- Fits to helicity distributions

JLab 12

- Measurements at high- $x \to \Delta q/q$
- Wider coverage in $Q^2 \rightarrow \Delta g$
- Determination of pure twist-3 d_2 in DIS

Backup

Mellin trick

Curse of dimensionality → Mellin trick (Stratmann, Vogelsang)

$$\begin{split} I(x) &= \int_x^1 \frac{dy}{y} f(y) \int_y^1 \frac{dz}{z} g\left(\frac{x}{yz}\right) & \leftarrow & g(\xi) = \frac{1}{2\pi i} \int dN \xi^{-N} g_N \\ &= \frac{1}{2\pi i} \int dN g_N \Bigg[\int_x^1 \frac{dy}{y} f(y) \int_y^1 \frac{dz}{z} \left(\frac{x}{yz}\right)^{-N} \Bigg] \\ &= \frac{1}{2\pi i} \int dN g_N \mathcal{M}_N \\ &= \sum_{i,k} w_i^k j^k \mathrm{Im} \left(e^{i\phi} g_{N_j^k} \mathcal{M}_{N_j^k} \right) & \leftarrow & \mathrm{Gaussian\ quadrature} \end{split}$$

- Time consuming part can be precalculated prior to the fit
- Extensible to higher dimensional integrals.
- lacksquare A single fit that takes about 4 days ightarrow pprox 20 mins

Leading twist structure functions:

$$\begin{split} g_1^{\text{LT+TMC}}(x,Q^2) = & \frac{x}{\xi} \frac{g_1^{\text{LT}}(\xi)}{(1+4\mu^2 x^2)^{3/2}} + 4\mu^2 x^2 \frac{x+\xi}{\xi(1+4\mu^2 x^2)^2} \int_{\xi}^1 \frac{dz}{z} g_1^{\text{LT}}(z) \\ & - 4\mu^2 x^2 \frac{2-4\mu^2 x^2}{2(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^1 \frac{dz}{z} \int_{z'}^1 \frac{dz'}{z'} g_1^{\text{LT}}(z') \\ g_2^{\text{LT+TMC}}(x,Q^2) = & -\frac{x}{\xi} \frac{g_1^{\text{LT}}(\xi)}{(1+4\mu^2 x^2)^{3/2}} + \frac{x}{\xi} \frac{(1-4\mu^2 x\xi)}{(1+4\mu^2 x^2)^2} \int_{\xi}^1 \frac{dz}{z} g_1^{\text{LT}}(z) \\ & + \frac{3}{2} \frac{4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^1 \frac{dz}{z} \int_{z'}^1 \frac{dz'}{z'} g_1^{\text{LT}}(z') \end{split}$$

In the Bjorken limit $(Q^2 \to \infty)$:

$$g_1^{\mathrm{LT+TMC}}(x,Q^2) \simeq g_1^{\mathrm{LT}}(x), \quad g_2^{\mathrm{LT+TMC}}(x,Q^2) \simeq -g_1^{\mathrm{LT}}(x) + \int_{\xi}^1 rac{dz}{z} g_1^{\mathrm{LT}}(z)$$

Leading twist quark distributions:

$$g_1^{\text{LT}}(x) = \frac{1}{2} \sum_q e_q^2 \left[\Delta C_{qq} \otimes \Delta q(x) + \Delta C_{qg} \otimes \Delta g(x) \right]$$

Polarized DIS

Twist-3 structure functions:

$$\begin{split} g_1^{\mathrm{T3+TMC}}(x,Q^2) = & 4\mu^2 x^2 \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - 4\mu^2 x^2 \frac{3}{(1+4\mu^2 x^2)^2} \int_{\xi}^1 \frac{dz}{z} D(z) \\ & + 4\mu^2 x^2 \frac{2-4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^1 \frac{dz}{z} \int_{z'}^1 \frac{dz'}{z'} D(z') \\ g_2^{\mathrm{T3+TMC}}(x,Q^2) = & \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - \frac{1-8\mu^2 x^2}{(1+4\mu^2 x^2)^2} \int_{\xi}^1 \frac{dz}{z} D(z) \\ & - \frac{12\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^1 \frac{dz}{z} \int_{z'}^1 \frac{dz'}{z'} D(z') \end{split}$$

Bjorken limit $(Q^2 \to \infty)$:

$$g_1^{\mathrm{T3+TMC}}(x,Q^2) \simeq 0$$
 $g_2^{\mathrm{T3+TMC}}(x,Q^2) \simeq \frac{D(x)}{z} - \int_{\varepsilon}^1 \frac{dz}{z} \frac{D(z)}{z}$

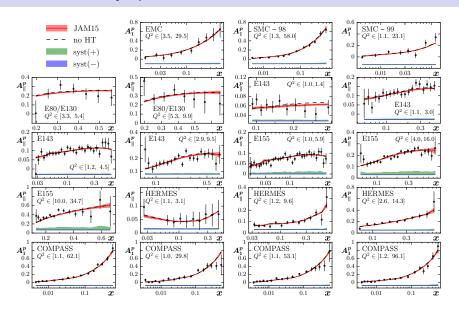
Twist-3 quark distributions:

$$D(x, Q^2) = \frac{4}{9}D_u(x, Q^2) + \frac{1}{9}D_d(x, Q^2)$$

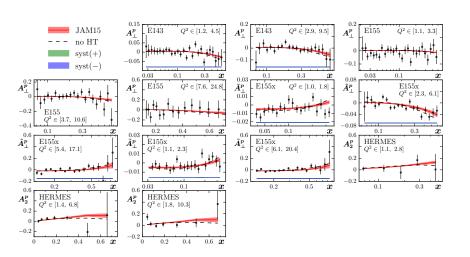
Polarized DIS

Twist-4 structure function (Nucleon d.o.f.):

$$g_1^{\text{T4(p,n)}}(x,Q^2) = H^{(p,n)}(x)/Q^2$$


Nuclear corrections: → nuclear smearing functions

$$g_i^A(x, Q^2) = \sum_N \int \frac{dy}{y} f_{ij}^N(y, \gamma) g_j^N(x/y, Q^2)$$


Addition constraints: \rightarrow weak neutron and hyperon decay constants

- $\Delta u^{+(1)} \Delta d^{+(1)} = F + D = 1.269(3)$
- $\Delta u^{+(1)} + \Delta d^{+(1)} 2\Delta s^{+(1)} = 3F D = 0.586(31)$

Data vs theory: proton

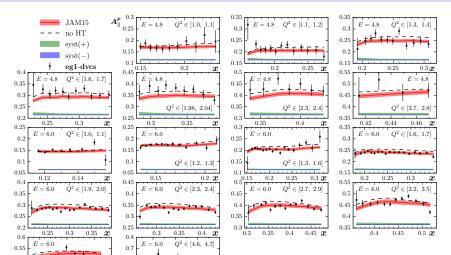
Data vs theory: proton

Data vs theory: proton JLab eg1b-dvcs

0.6

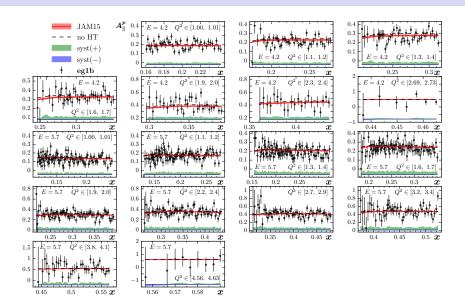
0.5

0.56

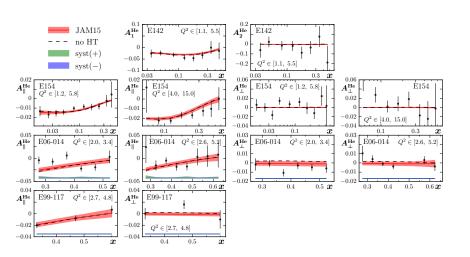

0.5

0.45

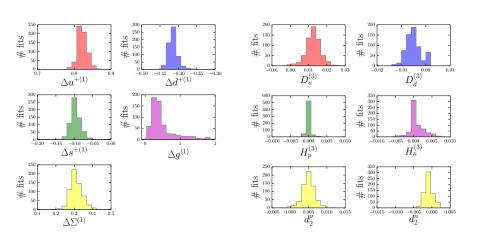
0.45


0.5

0.55 2



Signal of HT contribution.


Data vs theory: proton JLab eg1b

Data vs theory: ³He

JAM: moments

