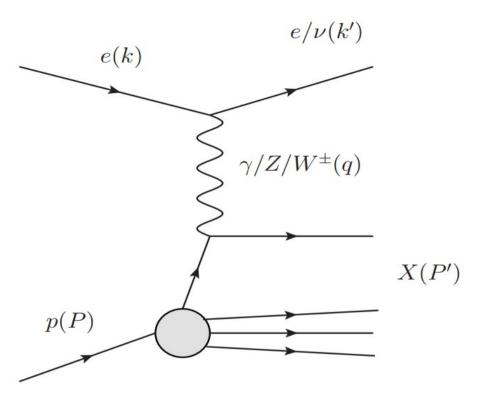


Combined QCD and EW analysis of **HERA** data

DESY-16-039

arXiv:1603.09628

Accepted by PRD



Volodymyr Myronenko **DESY**

on behalf of the ZEUS collaboration

Deep-Inelastic Scattering Hamburg, Germany 2016

Deep Inelastic Scattering at HERA

$$E_P = 920(820, 460, 575)GeV$$

 $E_e = 27.5 GeV$

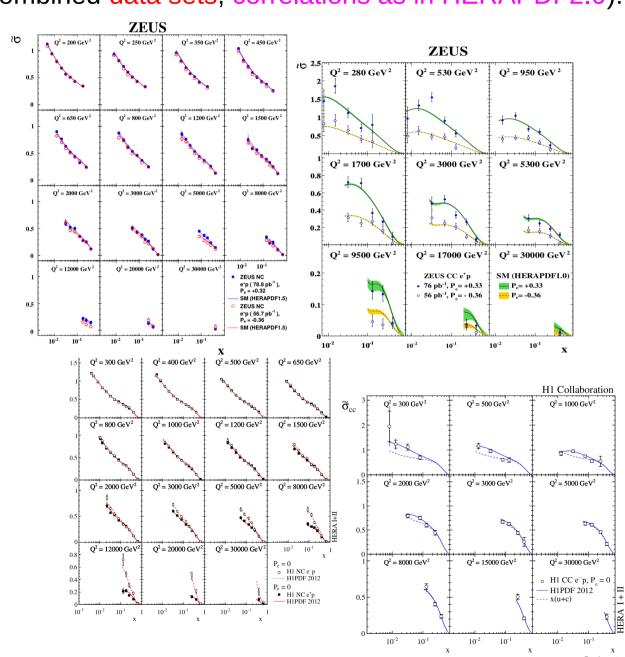
$$\sqrt{s} = 318(300, 225, 252)GeV$$

- Lepton beams were polarised at HERAII
 - Crucial for the EW measuremets

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x_{Bj} = \frac{Q^{2}}{2pq} \qquad y = \frac{pq}{pk}$$

$$s = (p + k)^{2} \qquad Q^{2} = xys$$


Experimental achievements (H1 & ZEUS):

~ 0.5fb⁻¹ DIS data from each experiment

Data considered

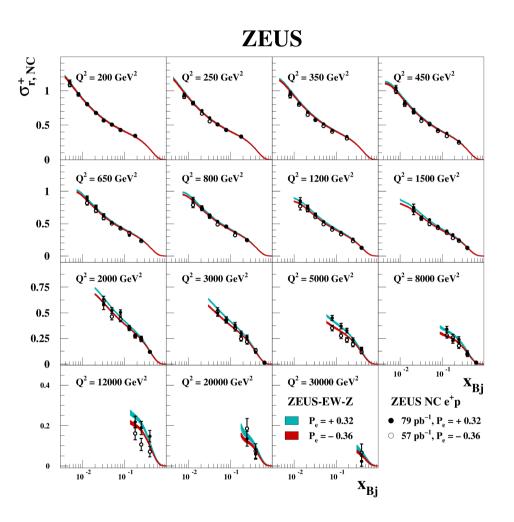
Data used in the analysis (uncombined data sets, correlations as in HERAPDF2.0):

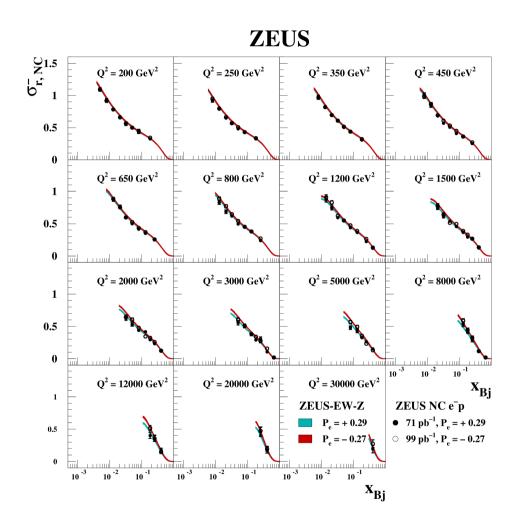
- HERAI: H1 + ZEUS P_a = 0;
- Reduced E_p runs: H1 + ZEUS, $P_p = 0$;
- HERAII:
 - H1 data with $P_e = 0$;
 - ZEUS data with P_e ≠ 0;

Global QCD analysis

- $Q_{min}^2 = 3.5 \text{ GeV}^2$.
- HF scheme: GM VFNS NLO (RT OPT).

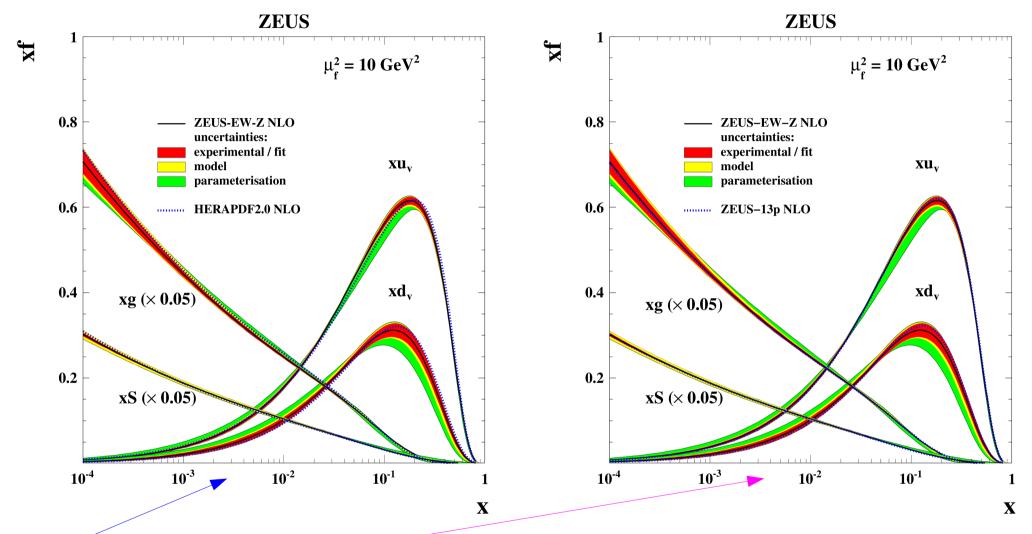
ightharpoonup PDFs parametrised with 13p (HERAPDF2.0 - $D\overline{U}$) at $Q_0^2 = 1.9 \text{ GeV}^2$


$$xf\left(x\right) = Ax^{B} \left(1-x\right)^{C} \left(1+Dx+Ex^{2}\right)$$


$$xg\left(x\right), xu_{v}\left(x\right), xd_{v}\left(x\right), x\bar{U}\left(x\right), x\bar{D}\left(x\right)$$

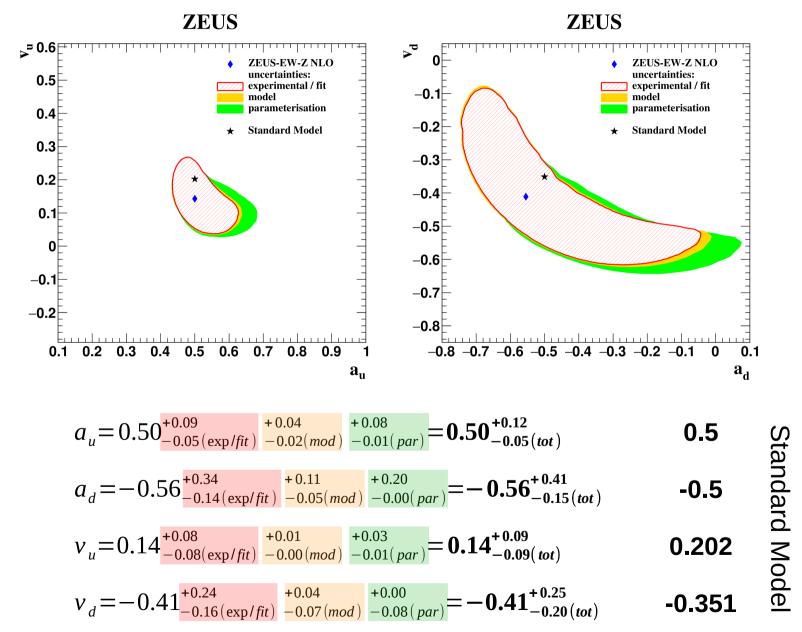
- ightharpoonup Free parameters: PDF parameters + couplings of Z^0 to quarks (a_u, a_d, v_u, v_d) , or M_w , or $\sin^2\theta_w$ (On-shell scheme).
- ightharpoonup Model and parameterisation uncertainty estimation ightharpoonup HERAPDF2.0 strategy.
- Correction calculated using EPRC code: Δr. No ISR/FSR corrections.
 desy.de/~hspiesb/eprc.html

Data description (ZEUS-EW-Z)


Fitted predictions describe data well.

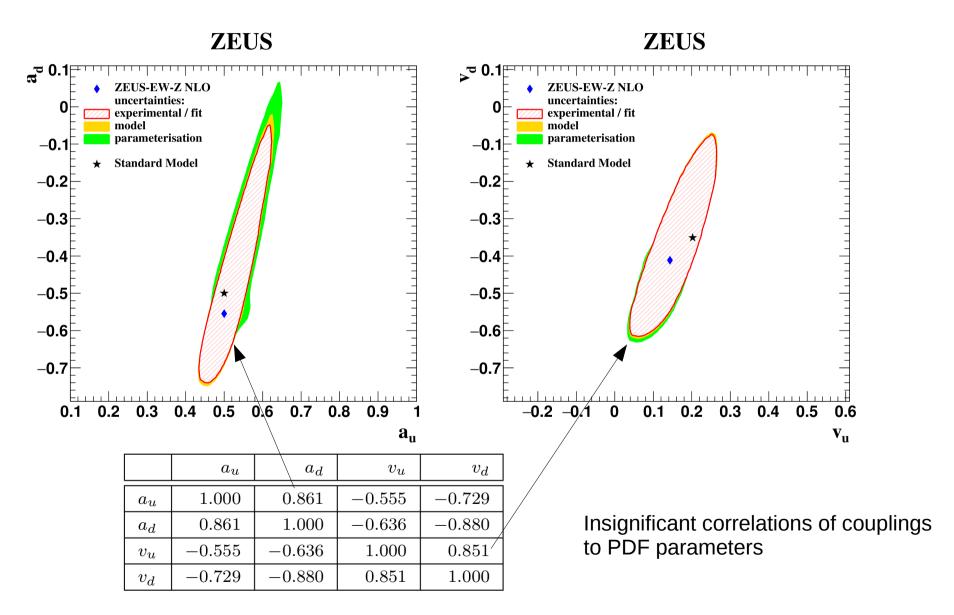
$$\Rightarrow$$
 $\chi^2 = 3270 / 2925 = 1.12$

Effect of coupling determination on PDFs



HERAPDF2.0 and ZEUS-13p PDFs with couplings set to SM agree with ZEUS-EW-Z PDFs.

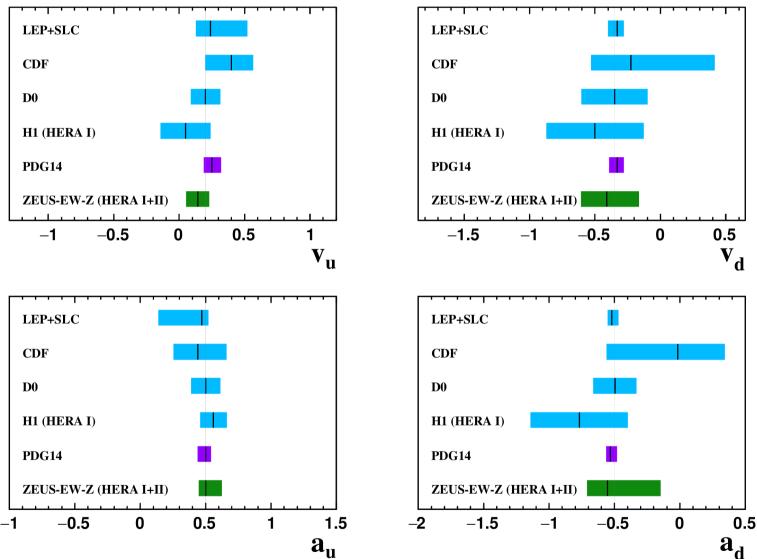
Releasing couplings has little effect on PDFs.


Couplings of quarks to Z boson

Couplings were determined simultaneously with PDFs (ZEUS-EW-Z)

Couplings of quarks to Z boson

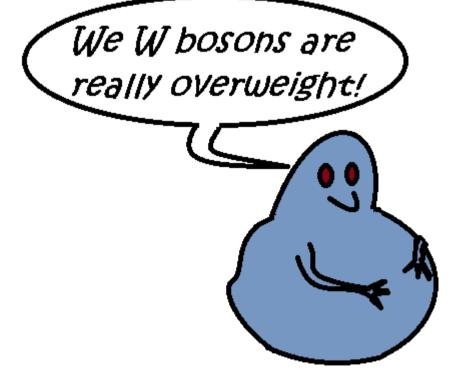
Vector and axial-vector couplings in the fit show high correlation


Couplings of quarks to Z boson

ZEUS-EW-Z results are compatible with previous measurements

HERA data show remarkable sensitivity to the u-type quark couplings.

Couplings of quarks to Z boson ZEUS


PDG average values do not yet include current ZEUS-EW-Z results.

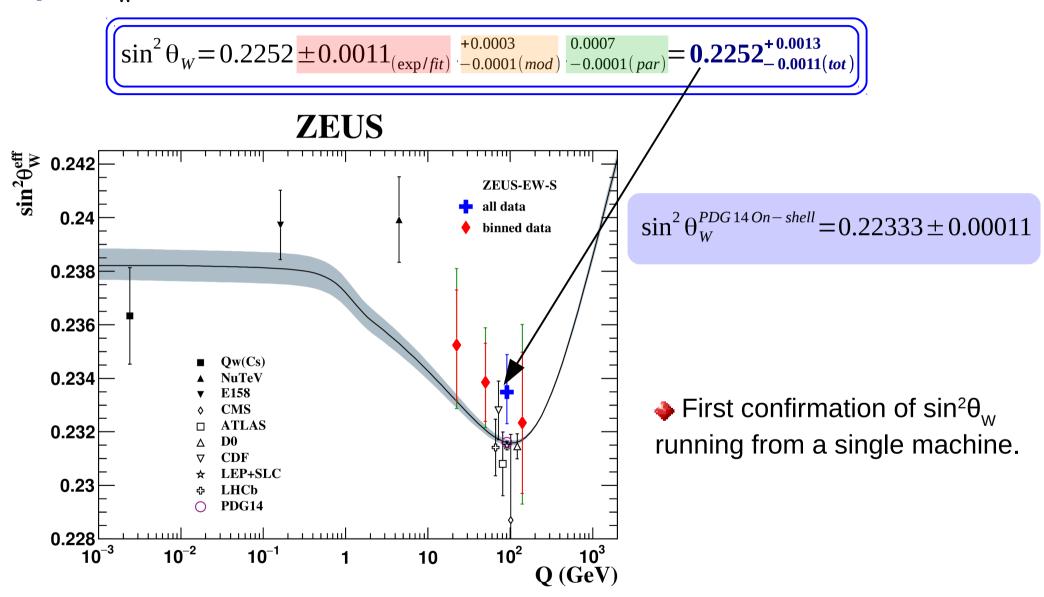
Pesults presented here have a potential to decrease uncertainties of average values (u-quark in particular)

Mass of W boson

Mass of W boson was determined simultaneously with PDFs (ZEUS-EW-W)

$$M_W = 80.68 \pm 0.28_{(exp/fit)} + 0.12_{-0.01(mod)} + 0.23_{-0.01(par)} GeV = 80.68_{-0.28(tot)}^{+0.38} GeV$$

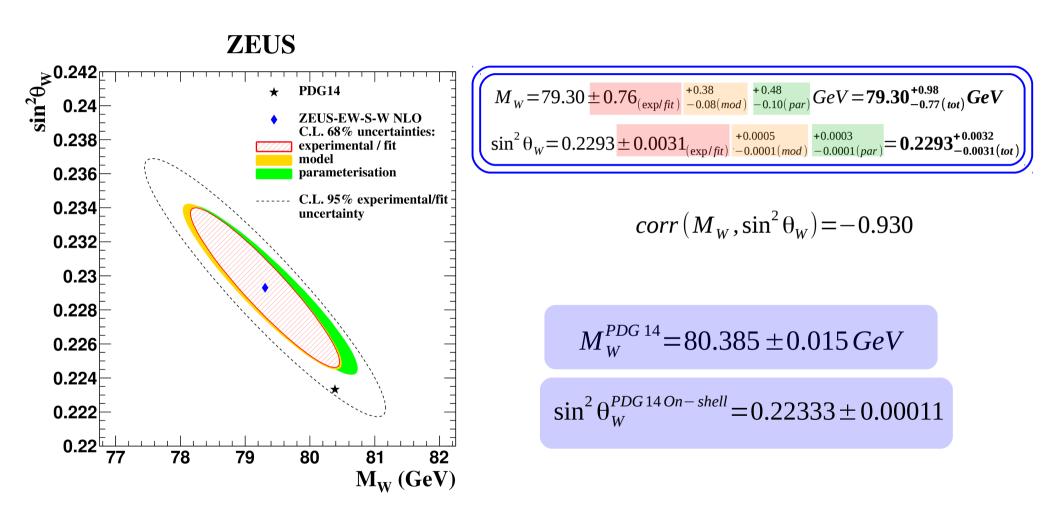
$$M_W^{PDG \, 14} = 80.385 \pm 0.015 \, GeV$$


 G_F in CC was re-expressed with:

$$G_F = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W M_W^2} \frac{1}{1 - \Delta R}$$

M_w form ZEUS-EW-W is consistent with current world average.

$sin^2\theta_w$ from HERA data

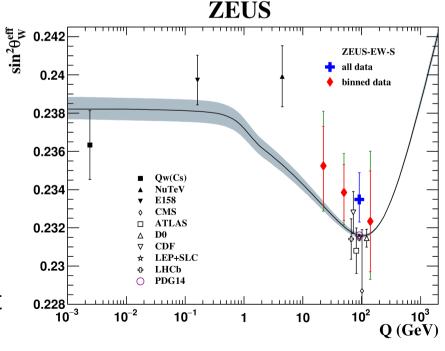

 \Rightarrow sin² θ_{w} was determined simultaneously with PDFs (ZEUS-EW-S)

ightharpoonup On-shell measurements were translated to $\sin^2\theta_w^{\text{eff}}$.

$sin^2\theta_w$ and mass of W boson

 \Rightarrow sin² θ_{w} and M_{w} were determined simultaneously with PDFs (ZEUS-EW-S-W)

All extracted quantities agree with World average values.

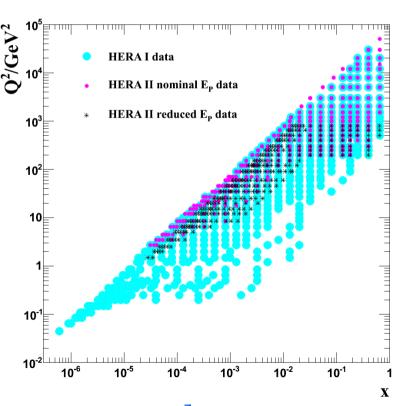

Summary

The simultaneous QCD and EW analysis of HERA data was performed.

DESY-16-039 arXiv:1603.09628

Accepted by PRD

- Couplings of u- and d-type quarks to Z boson were determined:
 - Fitted couplings are consistent with SM predictions;
 - Results are compatible with those from other measurements;
 - Couplings of u-quarks are constrained significantly better than those of d-quarks.
- \Rightarrow sin² θ_{w} at on-shell scheme was determined:
 - Fitted value is competitive with measurements from other experiments;
 - Result is consistent with current world average.
- Mass of W boson was determined:
 - ullet Fitted value of $M_{\rm w}$ is consistent with current world average.


Backup not necessarily useful...

Full HERA data collection

HERAPDF1.0

HERAPDF1.5

HERAPDF2.0

Data Set		x _{Bj} Grid		$Q^2[\text{GeV}^2]$ Grid		£	e ⁺ /e ⁻	\sqrt{s}	
		from	to	from	to	pb-1		GeV	
HERA I $E_p = 820$ GeV and $E_p = 920$ GeV data sets									
Hl svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e ⁺ p	301, 319	
H1 low Q^2	96-00	0.0002	0.1	12	150	22	e ⁺ p	301, 319	
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e ⁺ p	301	
H1 CC	94-97	0.013	0.40	300	15000	35.6	e ⁺ p	301	
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e ⁻ p	319	
H1 CC	98-99	0.013	0.40	300	15000	16.4	e ⁻ p	319	
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e ⁻ p	319	
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	
H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300	
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	
ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e ⁻ p	318	
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318	
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e ⁺ p	318	
HERA II $E_p = 920 \text{GeV}$ data sets									
H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e ⁺ p	319	
H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e^+p	319	
H1 NC 1.5p	03-07	0.0008	0.65	60	50000	151.7	e^-p	319	
H1 CC 1.5p	03-07	0.008	0.40	300	30000	151.7	e^-p	319	
H1 NC med Q2 *y.5	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319	
H1 NC low $Q^2 *y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319	
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ p	318	
ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e^+p	318	
ZEUS NC 1.5	05-06	0.005	0.65	200	30000	169.9	e^-p	318	
ZEUS CC 1.5	04-06	0.015	0.65	280	30000	175	e^-p	318	
ZEUS NC nominal *y	06-07	0.000092	0.008343	7	110	44.5	e^+p	318	
ZEUS NC satellite *y	06-07	0.000071	0.008343	5	110	44.5	e^+p	318	
HERA II $E_p = 575 \text{GeV}$	data sets								
H1 NC high Q ²	07	0.00065	0.65	35	800	5.4	e ⁺ p	252	
H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252	
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e ⁺ p	251	
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e ⁺ p	251	
HERA II $E_p = 460 \text{GeV}$	data sets								
H1 NC high Q ²	07	0.00081	0.65	35	800	11.8	e ⁺ p	225	
H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e^+p	225	
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e ⁺ p	225	
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225	

All inclusive DIS results are final and published!

Correlation matrix for the fit parameters

Aprig Bprig Buv Cuv Euv Bdv Cdv CUbar ADbar BDbar CDbar auEW adEW vuEW vdEW NO. Ba 1.000-0.014-0.449 0.824-0.216 0.172 0.250-0.084-0.085-0.098-0.107-0.136 0.046 0.025 0.003 0.015 0.018 Ba -0.014 1.000 0.831 0.457 0.341-0.373-0.550 0.010 0.296-0.018-0.082-0.103 -0.434 0.105 0.095 -0.098 -0.111 Cg -0.449 0.831 1.000 0.120 0.548-0.404-0.629 0.233 0.274 0.159 0.081 0.072 -0.148 -0.052 0.000 -0.043 -0.054 0.824 0.457 0.120 1.000 0.106-0.037-0.082 0.075 0.047 0.043 0.011-0.014 0.012 -0.029 -0.011 -0.001 -0.002 Bprig -0.216 0.341 0.548 0.106 1.000-0.409-0.774 0.465-0.086 0.690 0.476 0.395 0.439 -0.360 -0.178 0.079 0.070 Buv 0.172-0.373-0.404-0.037-0.409 1.000 0.828-0.297-0.235-0.188-0.095-0.069 -0.040 0.110 0.029 0.040 0.028 Cuv 0.250-0.550-0.629-0.082-0.774 0.828 1.000-0.296-0.066-0.363-0.170-0.117 -0.092 0.192 0.087 -0.023 -0.017 Euv -0.084 0.010 0.233 0.075 0.465-0.297-0.296 1.000 0.518 0.405 0.350 0.291 0.673 -0.335 -0.134 0.038 0.021 Bdv $-0.085\ 0.296\ 0.274\ 0.047 - 0.086 - 0.235 - 0.066\ 0.518\ 1.000 - 0.137 - 0.186 - 0.193\ - 0.139\ \ 0.110\ \ 0.128\ - 0.101\ - 0.128$ Cdv CUbar -0.098-0.018 0.159 0.043 0.690-0.188-0.363 0.405-0.137 1.000 0.673 0.635 0.329 -0.320 -0.137 0.055 0.052 ADbar -0.107-0.082 0.081 0.011 0.476-0.095-0.170 0.350-0.186 0.673 1.000 0.959 0.477 -0.272 -0.137 0.056 0.059 BDbar -0.136-0.103 0.072-0.014 0.395-0.069-0.117 0.291-0.193 0.635 0.959 1.000 0.415 -0.239 -0.120 0.047 0.053 CDbar 0.046-0.434-0.148 0.012 0.439-0.040-0.092 0.673-0.139 0.329 0.477 0.415 1.000 -0.449 -0.271 0.148 0.153 auEW 0.025 0.105-0.052-0.029-0.360 0.110 0.192-0.335 0.110-0.320-0.272-0.239 -0.449 1.000 0.861 -0.555 -0.729 adEW 0.003 0.095 0.000-0.011-0.178 0.029 0.087-0.134 0.128-0.137-0.137-0.120 -0.271 0.861 1.000 -0.636 -0.880 vuEW 0.015-0.098-0.043-0.001 0.079 0.040-0.023 0.038-0.101 0.055 0.056 0.047 0.148 -0.555 -0.636 1.000 0.851 vdEW 0.018-0.111-0.054-0.002 0.070 0.028-0.017 0.021-0.128 0.052 0.059 0.053 0.153 -0.729 -0.880 0.851 1.000

World results (full uncertainties)

	a _u	a_b	V _u	V _d
LEP	$0.47^{+0.05}_{-0.33}$	$-0.52^{+0.05}_{-0.03}$	$0.24^{+0.28}_{-0.11}$	-0.33 ^{+0.05} -0.07
D0	0.50±0.11	-0.50±0.17	0.20±0.11	0.35±0.25
CDF	$0.44_{ -0.19}^{ +0.22}$	$-0.02^{+0.36}_{-0.54}$	$0.40 \begin{array}{l} +0.17 \\ -0.20 \end{array}$	$-0.23^{+0.64}_{-0.30}$
H1: HERA1 (publ.)	0.56±0.10	-0.77±-0.37	0.05±0.19	-0.50±0.37
ZEUS: HERA1+2 (prel.)	0.51±0.20	-0.54±0.37	0.05±0.10	-0.64±0.24
ZEUS-EW-Z	$0.500 \cdot _{-0.050}^{+0.122}$	$-0.555^{+0.407}_{-0.152}$	$0.143^{+0.085}_{-0.088}$	$-0.411^{+0.246}_{-0.195}$
PDG14	$0.50^{+0.04}_{-0.06}$	$-0.523^{+0.050}_{-0.029}$	$0.25_{-0.06}^{+0.07}$	-0.33. ^{+0.05}
SM	0.5	-0.5	0.202	-0.351

Effect of PDFs determination on couplings

Couplings, fitted at fixed PDFs are well compatible with those from ZEUS-EW-Z fit.

	a_u	exp	tot	a_d	exp	tot	v_u	exp	tot	v_d	exp	tot
EW-Z	+.500	$^{+.086}_{047}$	$+.122 \\050$	555	$+.337 \\144$	$^{+.407}_{152}$	+.143	$^{+.084}_{081}$	$^{+.085}_{088}$	411	$^{+.243}_{164}$	$^{+.246}_{195}$
13p	+.485	$+.073 \\038$		567	$+.295 \\130$		+.145	$+.079 \\076$		402	$^{+.216}_{171}$	
HPDF1*	+.474	$+.059 \\033$		619	$+.233 \\107$		+.156	$+.076 \\076$		353	$+.215 \\190$	
HPDF2*	+.486	$^{+.061}_{034}$		634	$^{+.239}_{110}$		+.149	$^{+.078}_{078}$		357	$^{+.220}_{194}$	
SM	+.500			500			+.202			351		

Differences in the experimental uncertainties can give a rough estimate of PDF uncertainties in the measurement.

^{*} HERAPDF2.0 used $\sin^2\theta_w$ @ \overline{MS} - HPDF2, this analysis uses $\sin^2\theta_w$ @ On-schell - HPDF1. The influence of $\sin^2\theta_w$ for PDF extraction only is minimal (checked).

On $\sin^2\theta_{\text{vv}}(+X)$ fits to DIS data

- DIS inclusive cross sections depend on $\sin^2\theta_w$ through:
 - Z propagator in NC cross sections;
 - Vector couplings of Z to quarks;

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})\chi_{Z}^{2}F_{2}^{Z}$$

$$x\tilde{F}_3^{\pm} = -(a_e \pm P_e v_e)\chi_Z x F_3^{\gamma Z} + (2v_e a_e \pm P_e (v_e^2 + a_e^2))\chi_Z^2 x F_3^Z$$

W propagator (G_□);

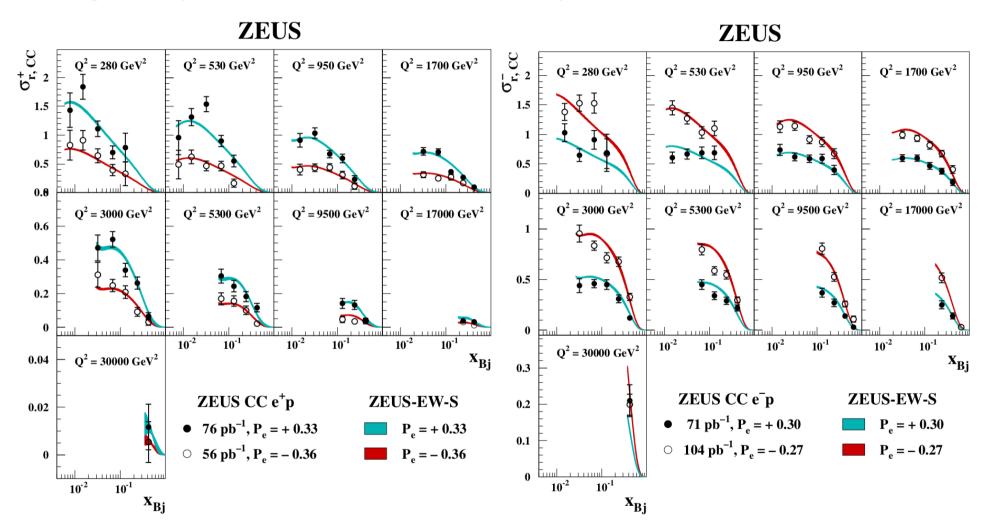
$$\frac{d^2\sigma_{\text{CC}}(e^+p)}{dx_{\text{Bj}}dQ^2} = (1 + P_e) \frac{G_F^2 M_W^4}{2\pi x_{\text{Bj}}(Q^2 + M_W^2)^2} x[(\bar{u} + \bar{c}) + (1 - y)^2 (d + s + b)]$$

$$\frac{d^2\sigma_{\text{CC}}(e^-p)}{dx_{\text{Bj}}dQ^2} = (1 - P_e) \frac{G_F^2 M_W^4}{2\pi x_{\text{Bj}}(Q^2 + M_W^2)^2} x[(u + c) + (1 - y)^2 (\bar{d} + \bar{s} + \bar{b})]$$

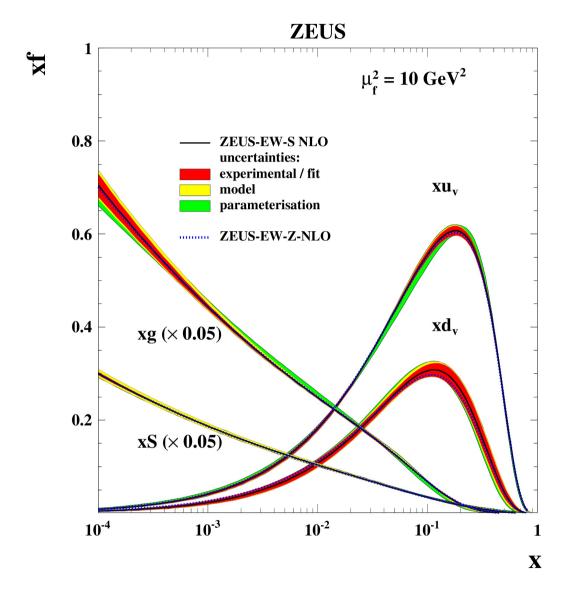
$$G_F = \frac{\pi\alpha}{\sqrt{2} \sin^2\theta_W M_W^2} \frac{1}{1 - \Delta R}$$

 ΔR is an EW correction.

$$\chi_Z = \frac{1}{\sin^2 2\theta_W} \frac{Q^2}{M_Z^2 + Q^2} \frac{1}{1 - \Delta R}$$

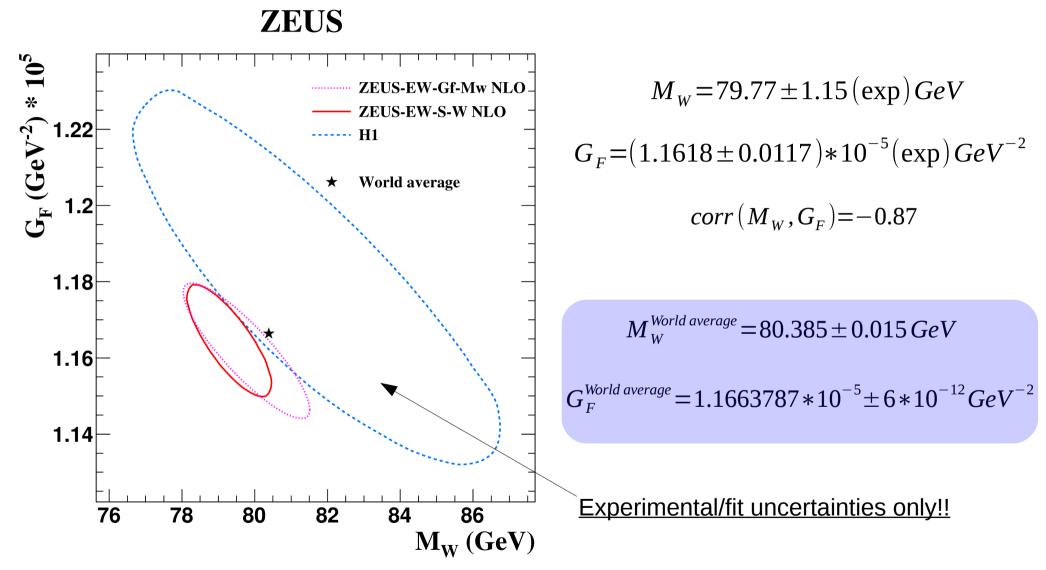

$$G_F = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W M_W^2} \frac{1}{1 - \Delta R}$$

arXiv:hep-ph/9902277


- Re-expressing G_F through $\sin^2\theta_W$ and M_W allows to use both CC and NC for $\sin^2\theta_W$ determination.
- Current analysis exploits all three dependences for $\sin^2\theta_w$ extraction.
- \bullet sin² θ_{w} values extracted in current analysis correspond to On-shell scheme.

Data description (ZEUS-EW-S)

Fitted predictions describe data reasonably well.


ZEUS-EW-Z vs ZEUS-EW-S

G_F and mass of W boson

 $ightharpoonup G_F$ and M_W were also determined simultaneously with PDFs as a consistency check.

 \rightarrow Fitter G_{E} and M_{W} are consistent with current world average values.

Quark couplings to Z

Now consider fits to electroweak NC couplings as well as PDF parameters

The total cross-section : $\sigma = \sigma^0 + P \sigma^P$

The unpolarised cross-section is given by $\sigma^0 = Y_+ F_2^0 + Y_- x F_3^0$

$$F_2^0 = \Sigma_i A_i^0(Q^2) [xq_i(x,Q^2) + xq_i(x,Q^2)]$$

$$xF_3^0 = \Sigma_i B_i^0(Q^2) [xq_i(x,Q^2) - xq_i(x,Q^2)]$$

$$A_i^0(Q^2) = e_i^2 - 2 e_i \mathbf{v_i} \mathbf{v_e} P_7 + (\mathbf{v_e}^2 + \mathbf{a_e}^2)(\mathbf{v_i}^2 + \mathbf{a_i}^2) P_7^2$$

$$A_i^0(Q^2) = e_i^2 - 2 e_i \mathbf{v_i} \mathbf{v_e} P_Z + (\mathbf{v_e}^2 + \mathbf{a_e}^2) (\mathbf{v_i}^2 + \mathbf{a_i}^2) P_Z^2$$

$$B_i^0(Q^2) = -2 e_i \mathbf{a_i} \mathbf{a_e} P_Z + 4 \mathbf{a_i} \mathbf{a_e} \mathbf{v_i} \mathbf{v_e} P_Z^2$$

$$P_Z = \frac{1}{\sin^2 2\theta} \frac{Q^2}{(M_Z^2 + Q^2)}$$

$$P_{Z} = \frac{1}{\sin^{2} 2\theta} \frac{Q^{2}}{(M_{Z}^{2} + Q^{2})}$$

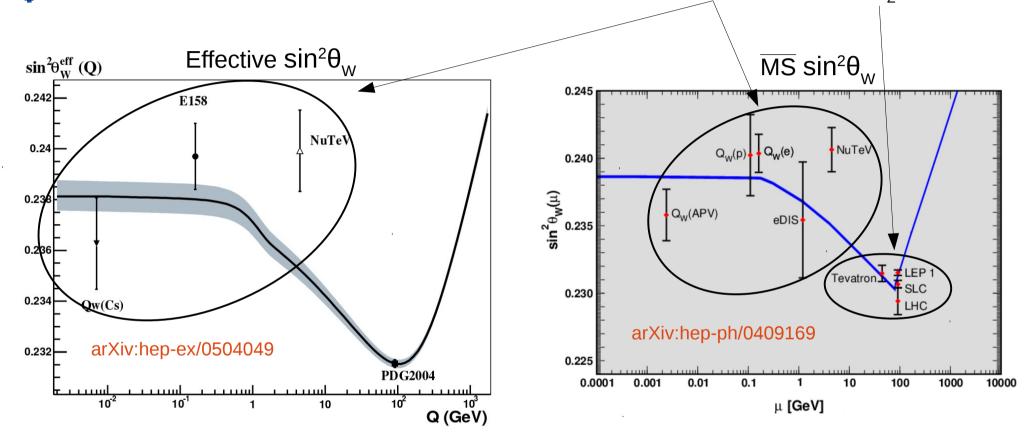
The polarised cross-section is given by $\sigma^P = Y_+ F_2^P + Y_- x F_3^P$

$$F_2^P = \Sigma_i A_i^P(Q^2) [xq_i(x,Q^2) + xq_i(x,Q^2)]$$

$$xF_3^P = \Sigma_i B_i^P(Q^2) [xq_i(x,Q^2) - xq_i(x,Q^2)]$$

$$A_i^P(Q2) = 2 e_i v_i a_e P_7 - 2 v_e a_e (v_i^2 + a_i^2) P_7^2$$

$$B_i^P(Q2) = 2 e_i a_i v_e P_Z - 2 a_i v_i (v_e^2 + a_e^2) P_Z^2$$


 $P_7 >> P_Z^2$ (yZ interference is dominant) $\mathbf{v}_{\mathbf{e}}$ is very small (~0.04).

unpolarized
$$xF_3 \rightarrow a_i$$
, polarized $F_2 \rightarrow v_i$

From slides by Amanda Cooper-Sarkar

On $sin^2\theta_w$ running with a scale

♦ All the measurements were so far done either at the scale μ < ≈ 1 GeV or $μ = M_{7}$.

Both of the variants more-or-less follow the same approach:

$$1 - 4 \kappa(Q^2) \sin^2 \theta_W(M_Z) = 1 - 4(Q^2) \sin^2 \theta_W(Q^2)$$

$$\kappa = \kappa_f(Q^2, \alpha, T_{3f}, Q_f, m_f, M_Z) + \kappa_b(Q^2, \alpha, M_W)$$
 Fermion and boson loop.