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BNL Approach to EIC

« At BNL we are pursuing design of electron-ion collider, eRHIC,
which covers all CM range of interest indicated in EIC white paper
from day one

* Asacost-effective strategy, we selected luminosity up-grade path
towards ultimate eRHIC performance

« Our eRHIC design is base on linac-ring scheme, which offers
ultimate eRHIC performance.

« As a back-up option, we are reviewing one more time the ring-ring
option

« Both versions have their own challenges and risks - we are pursuing
extensive R&D program to mitigate and retire risks for both

designs
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eRHIC: QCD Facility at BNL

Add electron accelerator to the existing $2B RHIC
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‘T 70% polarized protons

100-250 (275*) GeV

Light ions (d,Si,Cu)
Heavy ions (Au,V)
50-100 (110*) GeV/u

Polarized light ions
(He3) 167 (184*) GeV/u

Center of mass energy range: 30-145 GeV
Any polarization direction in lepton-hadrons collisions

electrons
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* There is a possibility of 10% increase of the RHIC energy

** Positrons can be added as an up-grade but at lower luminosity

protons
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eRHIC design

Highly advanced and energy efficient accelerator
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6.7-18.3 GeV

20 Gev) &
2 cev @5 )

Energy Recovery
Linac: 1.665 GeV

Hadron Cooler Electron Source

20 MeV injector

+  Peak luminosity: 2 x 1034 cm:2 5!
« ERL, permanent magnet arcs and strong
cooling of proton beam reduce electric

power consumption from ~1GW to
about 15 MWI
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eRHIC peak luminosity vs. CoM ener?

e-N Luminosity [cm2 s]

eRHIC peak luminosity
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« eRHIC design covers whole Center-of-Mass energy range, including

« Small beam emittances and IR design allows for full acceptance
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Ring - ring vs. ERL - ring >
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Ep:250 GeV, E_,=20 GeV
- Ring - Ring « ERL - Ring
— For bunch rep. rafe f, = 10 MHz: — For bunch rep. rate f, = 10
L<9 x10% s cmr MHz (or any rate) the
— Increase luminosity by increasing luminosity is not limited;
f, (and electron current and eRHIC design study had &,=1.5:

synchrotron radiation power)

- 34 a1 ;fpm-2
— Decrease electron current (and L=14x10%s"cm
synchrotron power) by cooling — Increase luminosity and/or

proton beam and use low decrease electron current by
emittance electron storage ring cooling proton/ion beam

— High power of SR losses L L .
- E{ﬁ%h synchrotron radiation in — Source with high polarized
e

ector (e.g. back-ground) is electron current is the main
the main challenge challenge
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Staging Luminosity
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Table 1-1: Beam parameters for highest luminosity of e-p collisions for the three design options.

RR Nominal design | LR Nominal design | LR Ultimate design
e P e P e P

Energy [GeV] 13.7 250 10 250 8.3 250
CM energy [GeV] 117 100 91
Bunch frequency [MHZ] C 282D 9.4 9.4
Bunch intensity [10'°] 21 22 1.7 20 3.3 30
Beam current [mA | 935 990 P 26 277 50 415
rms norm.emittance h/vfum] | 1430/250 | 2.5/2.5 | 36.7/36.7 { 0.5/0.5>| 16.5/16.5 [€0.27/0.27
rms emittance h/v [nm] 53/9.4 9.4/9 .4 1.9/1.9 1.9/1.9 1.0/1.0 1.0/1.0
beta®, h/v [cm] 38/27 216/27 | 12.5/12.5 | 12.5/12.5 7/7 7/7
IP rms beam size h/v [um] 142/50 15.3/15.3 8.4/8.4
IP rms ang. .spread h/v [urad] | 375/186 | 66/186 120/120 | 120/120 | 120/120 | 120/120
max beam-beam parameter 0.1 0.015 1.2 0.004 4.1 0.015
e-beam disruption parameter 20 36
max space charge parameter 4e-5 0.001 1.4e-4 0.006 8.6e-4 4 0.058 |
rms bunch length [cm] 1 20 0.3 16.5 0.3 5
Polarization [%] 80 70 80 70 80 70
Peak luminosity [10”cm™s™ ] 1.4 1.0 14.4
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Table 1-2: Beam parameters for highest luminosity of e-Au collisions for the three design options.

RR Nominal design | LR Nominal design | LR Ultimate design
e Au e Au e Au
Energy [GeV/u] 13.7 100 10 100 8.3 100
CM energy [GeV] 74 63 58
Bunch frequency [MHZ] C 282D 9.4 9.4
Bunch intensity [10'°] 21 0.2 1.7 0.2 3.3 0.2
Beam current [mA ] < 935 710> 26 219 50 219
rms norm.emittance h/vjum]| 1420/ 1.0/1.0 29/29 10.16/0.16 | 24/24 <0.16/0.16]
rms emittance h/v [nm] 53/9.4 9.4/9 4 1.5/1.5 1.5/1.5 1.5/1.5 1.5/1.5
beta*, h/v [cm] 38/27 216/27 | 12.5/12.5 | 12.5/12.5 7/7 7/7
IP rms beam size h/v [um] 142/50 13.6/13.6 10.2/10.2
IP rms ang. .spread h/v [urad] | 375/186 | 66/186 | 109/109 | 109/109 | 146/146 | 146/146
max beam-beam parameter 0.073 0.015 1.2 0.0053 1.5 0.01
e-beam disruption parameter 20 29
max space charge parameter 4e-5 0.005 1.5e-4 0.039 6e-4 < 0.058 P
rms bunch length [cm] 1 20 0.3 16.5 0.3 11
Polarization [%] 80 0 80 0 80 0
Peak luminosity [107cm™s™] 2.5 2.5 8.0
N?Tﬁ?glggg‘g%'gy ‘\\\Q Stony Brook

University



EIC Main Detector Requirements

E.C. Aschenauer, A. Kiselev and R. Petti
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Global Requirements

Requirements from Physics:

dHigh Luminosity > 1033 cm=2s-tand higher - nucleon/nuclei
Imaging

JFlexible center of mass energy - wide kinematic reach

dElectrons (0.8) and protons/light nuclei (0.7) highly polarized
- study spin

L Wide range of nuclear beams (D to U) = high gluon densities

Hdroom for a wide acceptance detector with good PID (e/h and
p. K. p)

Lwide acceptance for protons from elastic reactions and
neutrons from nuclear breakup
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EIC physics regs

* Requirements for detector and IR clearly defined and documented

« AP and EIC groups work together to integrate the main and auxilliary
detectors into the machine and IR-design

Polarization
Bunch spin orientation

scattered neutron acc.
scattered proton acc.

Machine free region
Luminosity

Luminosity monitor acc.

Relative Luminosity
wide kinematic range
wide range of nuclei
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Hadron Lepton
0.7 0.8
flexible from bunch to flexible from bunch to
bunch bunch

+/- 4 mrad

+/- 5 mrad @ 250 GeV
0.18 < p; (GeV) < 1.3

+/- 45 m for detector
> 1033 cm=2s!

+/-1-2 mrad
dL/L < 10/0

L++/~/L*/~* ~ 10 10 103
Js: 45 (30) to 140 GeV
p to Uranium
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eRHIC: IR Design is join venture

of accelerator and EIC physicists
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Accelerator R&D for eRHIC

Polarized electron gun
Coherent Electron Cooling
Multi-pass SRF ERL with FFAG arcs - C-beta

Crab cavities

Polarized 3He production

Linac-ring beam-beam affects
B*=5 cm
HOM damped SRF cavities

9
- 4
,¢ )

NATI O’”N/KL LABORATORY




Crab-crossing in all scenarios

« We have to separate colliding beams.

« To avoid synchrotron radiation by 20 GeV electrons in the IR - one of serious
backgrounds at HERA, we can not use separating dipoles.

« To separate beams without applying magnetic field, we need a crossing angle
« This also allows bringing the hadron triplet closer to the IR - hence lower B*
« Crossing angle reduces luminosity ~100-fold

« The crabbing (tail up, nose down) is needed to restore luminosity

M\t M righs
D_F/B F/B D

Idea Introduced by R. B. Palmer SLAC PUB 4832

?

L,=948 m

Electron Bunch Positron Bunch % 325 GeV p or 130 GeV/u Au

- Cross Angle Crossing

-

Original BNL crab-cavity design

NAT Iolu:j( L LAB RATORY ‘\\\w Stony Brook

University




High luminosity with a Linac-Ring collider

« For Linac-Ring collider the single collision of electron bunch removes the
limitation of the beam-beam effect of the high energy hadron beam on the lower
energy electron beam

« Can reach high luminosity with high intensity, low emittance hadron beam and
lower intensity electron beam (and less synchrotron radiation power)

« Disruption of electron beam by hadron beam is large (similar to ILC) but
emittance growth is limited to about 2x

* Need strong hadron beam cooling

(10 times in transverse and o Proton bunch ansiy: 6000408 .
longitudinal direction) for highest T mdecieontmmeae - | [l
luminosities, small vertex distribution, 61 Gsomatic amitacs e - .
and small forward divergence | |88

«  Novel cooling method: 7 o0

— Coherent electron Cooling (CeC)

xp [

o 60

— Required performance demonstrated in 00005 |- 1M .,

extensive simulations 2

— Proof-of-Principle test underway at RHIC oo :
-0.0002 -0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015 0.0002

x [m]
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High CW current polarized electron gun

Matt Poelker (JLab) achieved 4 mA polarized e-beam with 6 hours charge
lifetime

More current with effectively larger cathode area and laser spot
Tests started at MIT with very large cathode area

Gatling gun principle: multiple guns/cathodes with same charge lifetime
— Requires fast switching between guns/cathodes

Gatling Gun Test-stand at SBU:
— Tests with beam from two cathodes started

Backup to single Gatling gun: Fast switching between four 12.5 mA guns
nh 12.5 mA guns
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Multi-pass test-ERL at Cornell - an eRHIC prototype™

NATIONAL LABORATORY

Uses existing 6 MeV low-emittance and high-current injector and
48.5 MeV CW SRF Linac

ERL with single four-pass recirculation arc with x4 momentum range
Permanent magnets used for recirculation arc

Adiabatic ftransitions from curved to straight sections

Test of spreader/combiner beam lines

Hi?j\ current can be used to test HOM damping by replacing Linac with
eRHIC Linac cryostat
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Coherent electron Cooling Proof-of-Principle
Experiment
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Coherent electron Cooling (CeC) demonstration experiment

« DOE NP R&D project aiming for demonstration of CeC technique is in progress since
2012

« All equipment and infrastructure had been installed into RHIC's IP2, including 20 MeV
SRF linac and helical wigglers for FEL amplifier beam ftransported to low energy dump

« First beam from SRF gun (3 nC/bunch, 1.7 MeV) on 6/24/2015; exceeds performance of
all operating CW electron guns

« Proof-of-principle demonstration with 40 GeV/n Au beam scheduled during RHIC Run 16
and 17. Micro-bunching test also planned with same set-up
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First photo-electrons in 2016
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Collaboration network

« We are collaborating with a number of institutions on various aspects
of eRHIC R&D. We intend to expand this network.
— SBU - all R&D items
— BINP, Daresbury Lab - Coherent electron cooling
— Cornell - FFAG multi-pass ERL experiment, high intensity electron source
— MIT - polarized gun R&D
— JLab - CEBAF ERL experiment, possible collaboration on polarized electron
gun
— CERN - crab cavities for HL-LHC and eRHIC (ERL-Ring or Ring-Ring), test-
ERL
— Berkeley - numerical simulations of beam-beam interactions, discuss
collaboration on a number of items
— ANL - discuss collaboration on HOM damper design, possible collaboration
on low-energy injector cavities
— FNAL - possible collaboration on 650 MHz SRF ERL cavities
— Various SBIR projects - high-efficiency RF amplifiers (completed), in-situ
RHIC beam pipe coating (only stage 1), eRHIC permanent magnet
development, high intensity electron beam transport

BROOKHFAEN -
NATIONAL LABORATORY \\ S‘t().n._\, Brook
University



Conclusions a

€ We are considering multi-pass ERL with two FFAG arcs as a cost effective
solution for full-energy 21.15 GeV ERL for eRHIC

€ All energies will be available from the day one

€ TInitial luminosity of 1.5x 1033, will be increased above 1034 using AIPs (accelerator
improvement projects) - this strategy worked extremely well for RHIC
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€ The design is complete and undergoing the cost estimate
€ We studied most of collective effects & did not find any showstoppers

€ We are developing various risk mitigation scenarios - albeit with lower
luminosities - including more conventional cooling techniques and ring-ring
back-up option
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