

eRHIC: High-Energy, High-Luminosity Electron-Ion Collider at BNL

Vladimir N. Litvinenko for eRHIC design team

Stony Brook University, Stony Brook, NY, USA Brookhaven National Laboratory, Upton, NY, USA

DIS 2016, April 12, 2016, DESY, Hamburg, Germany

BNL Approach to EIC

- At BNL we are pursuing design of electron-ion collider, eRHIC, which covers all CM range of interest indicated in EIC white paper from day one
- As a cost-effective strategy, we selected luminosity up-grade path towards ultimate eRHIC performance
- Our eRHIC design is base on linac-ring scheme, which offers ultimate eRHIC performance.
- As a back-up option, we are reviewing one more time the ring-ring option
- Both versions have their own challenges and risks we are pursuing extensive R&D program to mitigate and retire risks for both designs

eRHIC: QCD Facility at BNL Add electron accelerator to the existing \$2B RHIC 70% polarized protons eRH 100-250 (275*) GeV Luminosity: (e-) $10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 80% polarized Light ions (d,Si,Cu) (e-) electrons, Heavy ions (Au,U) 2.6-21.2 GeV 50-100 (110*) GeV/u (e+) Polarized light ions (He³) 167 (184*) GeV/u Center of mass energy range: 30-145 GeV Any polarization direction in lepton-hadrons collisions

BROOKH&VEN

NATIONAL LABORATORY

power consumption from $\sim 1 \text{ GW}$ to about 15 MW!

eRHIC peak luminosity vs. CoM energy

- eRHIC design covers whole Center-of-Mass energy range, including "EIC White Paper Upgrade" region
- Small beam emittances and IR design allows for full acceptance detector at full luminosity

 $E_p = 250 \text{ GeV}, E_e = 20 \text{ GeV}$

- Ring Ring
 - For bunch rep. rate $f_b = 10$ MHz: $L \le 9 \times 10^{32} \text{ s}^{-1} \text{ cm}^{-2}$
 - Increase luminosity by increasing f_b (and electron current and synchrotron radiation power)
 - Decrease electron current (and synchrotron power) by cooling proton beam and use low emittance electron storage ring
 - High power of SR losses
 - High synchrotron radiation in detector (e.g. back-ground) is the main challenge

- ERL Ring
 - For bunch rep. rate $f_b = 10$ MHz (or any rate) the luminosity is not limited; eRHIC design study had ξ_e =1.5: L = 1.4 x 10³⁴ s⁻¹ cm⁻²
 - Increase luminosity and/or decrease electron current by cooling proton/ion beam
 - Source with high polarized electron current is the main challenge

Staging Luminosity

Table 1-1: Beam parameters for highest luminosity of e-p collisions for the three design options.

	RR Nominal design		LR Nominal design		LR Ultimate design	
	е	р	е	р	е	р
Energy [GeV]	13.7	250	10	250	8.3	250
CM energy [GeV]	117		100		91	
Bunch frequency [MHz]	28	3.2	9	.4	9	.4
Bunch intensity [10 ¹⁰]	21	22	1.7	20	3.3	30
Beam current [mA]	935	990	26	277	50	415
rms norm.emittance h/v[um]	1430/250	2.5/2.5	36.7/36.7	0.5/0.5	16.5/16.5	0.27/0.27
rms emittance h/v [nm]	53/9.4	9.4/9.4	1.9/1.9	1.9/1.9	1.0/1.0	1.0/1.0
beta*, h/v [cm]	38/27	216/27	12.5/12.5	12.5/12.5	7/7	7/7
IP rms beam size h/v [um]	142/50		15.3/15.3		8.4/8.4	
IP rms angspread h/v [urad]	375/186	66/186	120/120	120/120	120/120	120/120
max beam-beam parameter	0.1	0.015	1.2	0.004	4.1	0.015
e-beam disruption parameter			20		36	
max space charge parameter	4e-5	0.001	1.4e-4	0.006	8.6e-4	0.058
rms bunch length [cm]	1	20	0.3	16.5	0.3	5
Polarization [%]	80	70	80	70	80	70
Peak luminosity [10 ³³ cm ⁻² s ⁻¹]	1.4		1.0		14.4	

 Table 1-2: Beam parameters for highest luminosity of e-Au collisions for the three design options.

	RR Nominal design		LR Nominal design		LR Ultimate design	
	е	Au	е	Au	е	Au
Energy [GeV/u]	13.7	100	10	100	8.3	100
CM energy [GeV]	74		63		58	
Bunch frequency [MHz]	28.2		9.4		9.4	
Bunch intensity [10 ¹⁰]	21	0.2	1.7	0.2	3.3	0.2
Beam current [mA]	935	710>	26	219	50	219
rms norm.emittance h/v[um]	1420/	1.0/1.0	29/29	0.16/0.16	24/24	0.16/0.16
rms emittance h/v [nm]	53/9.4	9.4/9.4	1.5/1.5	1.5/1.5	1.5/1.5	1.5/1.5
beta*, h/v [cm]	38/27	216/27	12.5/12.5	12.5/12.5	7/7	7/7
IP rms beam size h/v [um]	142/50		13.6/13.6		10.2/10.2	
IP rms angspread h/v [urad]	375/186	66/186	109/109	109/109	146/146	146/146
max beam-beam parameter	0.073	0.015	1.2	0.0053	1.5	0.01
e-beam disruption parameter			20		29	
max space charge parameter	4e-5	0.005	1.5e-4	0.039	6e-4 <	0.058
rms bunch length [cm]	1	20	0.3	16.5	0.3	11
Polarization [%]	80	0	80	0	80	0
Peak luminosity [10 ³³ cm ⁻² s ⁻¹]	2.5		2.5		8.0	

EIC Main Detector Requirements

E.C. Aschenauer, A. Kiselev and R. Petti

Global Requirements

Requirements from Physics:

- □High Luminosity > 10³³ cm⁻²s⁻¹ and higher → nucleon/nuclei imaging
- \Box Flexible center of mass energy \rightarrow wide kinematic reach
- Electrons (0.8) and protons/light nuclei (0.7) highly polarized
 study spin
- ■Wide range of nuclear beams (D to U) → high gluon densities
 ■room for a wide acceptance detector with good PID (e/h and p, K, p)
- wide acceptance for protons from elastic reactions and neutrons from nuclear breakup

EIC physics reqs

- Requirements for detector and IR clearly defined and documented
- AP and EIC groups work together to integrate the main and auxilliary detectors into the machine and IR-design

	Hadron	Lepton		
Polarization	0.7	0.8		
Bunch spin orientation	flexible from bunch to bunch	flexible from bunch to bunch		
scattered neutron acc.	+/- 4 mrad			
scattered proton acc.	+/- 5 mrad @ 250 GeV 0.18 < p _t (GeV) < 1.3			
Machine free region	+/- 4.5 m for detector			
Luminosity	> 10 ³³ cm ⁻² s ⁻¹			
Luminosity monitor acc.		+/- 1-2 mrad dL/L < 1%		
Relative Luminosity	L++//L+-/-+ ~ 10-4 to 10-5			
wide kinematic range	√s: 45 (30) to 140 GeV			
wide range of nuclei	p to Uranium			

eRHIC: IR Design is join venture of accelerator and EIC physicists

E.C. Aschenauer, B. Parker, D. Trbojevic, Y. Jing.....

NATIONAL LABORATORY

Accelerator R&D for eRHIC

Polarized electron gun

Coherent Electron Cooling

Multi-pass SRF ERL with FFAG arcs - C-beta

Crab cavities

Polarized ³He production

Linac-ring beam-beam affects

β*=5 cm

HOM damped SRF cavities

Crab-crossing in all scenarios

- We have to separate colliding beams.
- To avoid synchrotron radiation by 20 GeV electrons in the IR one of serious backgrounds at HERA, we can not use separating dipoles.
- To separate beams without applying magnetic field, we need a crossing angle
- This also allows bringing the hadron triplet closer to the IR hence lower β^*
- Crossing angle reduces luminosity ~100-fold
- The crabbing (tail up, nose down) is needed to restore luminosity

High luminosity with a Linac-Ring collider

- For Linac-Ring collider the single collision of electron bunch removes the limitation of the beam-beam effect of the high energy hadron beam on the lower energy electron beam
- Can reach high luminosity with high intensity, low emittance hadron beam and lower intensity electron beam (and less synchrotron radiation power)
- Disruption of electron beam by hadron beam is large (similar to ILC) but emittance growth is limited to about 2x
- Need strong hadron beam cooling (10 times in transverse and longitudinal direction) for highest luminosities, small vertex distribution, and small forward divergence
- Novel cooling method:
 - Coherent electron Cooling (CeC)
 - Required performance demonstrated in extensive simulations
 - Proof-of-Principle test underway at RHIC

High CW current polarized electron gun

- Matt Poelker (JLab) achieved 4 mA polarized e-beam with 6 hours charge lifetime
- More current with effectively larger cathode area and laser spot
- Tests started at MIT with very large cathode area
- Gatling gun principle: multiple guns/cathodes with same charge lifetime
 Requires fast switching between guns/cathodes
- Gatling Gun Test-stand at SBU:
 - Tests with beam from two cathodes started
- Backup to single Gatling gun: Fast switching between four 12.5 mA guns
- Backup to high current gun: Fast switching between ten 12.5 mA guns

Universit

Multi-pass test-ERL at Cornell - an eRHIC prototype

- Uses existing 6 MeV low-emittance and high-current injector and 48.5 MeV CW SRF Linac
- ERL with single four-pass recirculation arc with x4 momentum range
- Permanent magnets used for recirculation arc
- Adiabatic transitions from curved to straight sections
- Test of spreader/combiner beam lines
- High current can be used to test HOM damping by replacing Linac with eRHIC Linac cryostat

Coherent electron Cooling Proof-of-Principle Experiment

Coherent electron Cooling (CeC) demonstration experiment

- DOE NP R&D project aiming for demonstration of CeC technique is in progress since 2012
- All equipment and infrastructure had been installed into RHIC's IP2, including 20 MeV SRF linac and helical wigglers for FEL amplifier, beam transported to low energy dump
- First beam from SRF gun (3 nC/bunch, 1.7 MeV) on 6/24/2015; exceeds performance of all operating CW electron guns
- Proof-of-principle demonstration with 40 GeV/n Au beam scheduled during RHIC Run 16 and 17. Micro-bunching test also planned with same set-up

in commissioning

Concrept electron co

First photo-electrons in 2016

Collaboration network

- We are collaborating with a number of institutions on various aspects of eRHIC R&D. We intend to expand this network.
 - SBU all R&D items
 - BINP, Daresbury Lab Coherent electron cooling
 - Cornell FFAG multi-pass ERL experiment, high intensity electron source
 - MIT polarized gun R&D
 - JLab CEBAF ERL experiment, possible collaboration on polarized electron gun
 - CERN crab cavities for HL-LHC and eRHIC (ERL-Ring or Ring-Ring), test-ERL
 - Berkeley numerical simulations of beam-beam interactions, discuss collaboration on a number of items
 - ANL discuss collaboration on HOM damper design, possible collaboration on low-energy injector cavities
 - FNAL possible collaboration on 650 MHz SRF ERL cavities
 - Various SBIR projects high-efficiency RF amplifiers (completed), in-situ RHIC beam pipe coating (only stage 1), eRHIC permanent magnet development, high intensity electron beam transport

Conclusions

- We are considering multi-pass ERL with two FFAG arcs as a cost effective solution for full-energy 21.15 GeV ERL for eRHIC
 - All energies will be available from the day one
 - Initial luminosity of 1.5x 10³³, will be increased above 10³⁴ using AIPs (accelerator improvement projects) this strategy worked extremely well for RHIC

◆ The design is complete and undergoing the cost estimate

NATIONAL LABORATORY

- We studied most of collective effects & did not find any showstoppers
- We are developing various risk mitigation scenarios albeit with lower luminosities – including more conventional cooling techniques and ring-ring back-up option

