

Pseudorapidity spectra in different final states at 13TeV

Juan Manuel Grados Luyando on behalf of the CMS Collaboration

Deutsches Elektronen-Synchrotron (DESY), Hamburg

DIS 2016: XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects

Hamburg, Germany

UH

CMS PAS FSQ-15-008

- Study the different components of particle production
- Constrain and tune the models
- Study transition from perturbative to non-perturbative region

Inelastic components

Non-Single Diffractive (NSD)

Measure average number of particles per pseudorapidity unit

The Compact Muon Solenoid (CMS) detector

Trigger: both beams crossing at the Interaction Point (IP)
Activity in the Forward Regions (HF)

Phase space definition at stable particle level

(A) At least 1 charged particle $\begin{cases} p_T > 0.5 \text{ GeV} \\ |\eta| < 2.4 \end{cases}$

Activity: at least 1 particle with E > 5 GeV

Inclusive: (A)

Veto: no particle with E > 5 GeV

Inelastic enhanced: (A) + Activity in at least one Forward Region

NSD enhanced: (A) + Activity in both Forward Regions

SD enhanced: (A) + Activity in one Forward Region and Veto in the other side

Control distributions: Tracking

Good description of the data at detector level

Control distributions: Forward calorimeter

Leading tower energy spectrum

An agreement is observed at the 10 % level in the low energy region

DIS 2016

$$\frac{1}{N_{evt}} \frac{dN_{ch}}{d\eta} = C(\eta) \times \frac{1}{N_{evt \text{ data}}^{\text{det sel}}} \times \frac{N_{\text{track data}}^{\text{det sel}}(\eta)}{\Delta \eta}$$

 $\begin{array}{lll} \Delta\eta & \mbox{the bin width} \\ N_{\rm evt \; data}^{\rm det \; sel} & \mbox{number of selected events in data} \\ N_{\rm track\; data}^{\rm det \; sel}(\eta) & \mbox{number of tracks in a given } \eta \mbox{ bin} \end{array}$

Final correction factor = average of PYTHIA8 and EPOS predictions

Correction Factors

$$C(\eta) = \frac{N_{\text{evt MC}}^{\text{det sel}}}{N_{\text{evt MC}}^{\text{particle sel}}} \times \frac{N_{\text{ch MC}}^{\text{particle sel}}(\eta)}{N_{\text{track MC}}^{\text{det sel}}(\eta)}$$

numbers of selected events in the Monte Carlo by the selection at detector level and stable particle level

 $N_{\rm int}^{\rm particle \ sel}(\eta)$ ch MC

numbers of tracks in a given η bin in the Monte Carlo at detector level and number of stable charged particles in a given η bin at particle level

Systematic uncertainties

Systematic effect	Inclusive	Inelastic	NSD	SD
Model Dependence	1%	1%	0.5%	7%
Event selection	N.A.	0.1%	0.5%	4%
Pile Up dependence	1.5%	1.5%	3%	4%
Tracking reconstruction	4%			
Total	4.5%	4.5%	5%	10%

After symmetrization: half of the difference between averaged bins is taken as an additional systematic uncertainty .

Monte Carlo models

* PYTHIA8 (MBR)

- Partonic interaction + parton showers
 - Parton showers —> DGLAP + Lund string model for hadronisation
- Diffraction generated
 - Schuler-Sjöstrand model in PYTHIA8
 - Renormalized Regge model in PYTHIA8 MBR

* EPOS

- Cosmic ray physics generator
- String model for hadronisation
- Soft processes: Gribov's Reggeon field theory
 - MPI: Multi-pomeron exchanges

* HERWIG++

- Partonic interaction (like in PYTHIA8) + parton showers
 - Parton showers —> DGLAP + angular ordering + cluster fragmentation for hadronisation
- No soft diffraction modelling

The tunes

Cross check with published result extrapolation to pT = 0

Different:

- data set
- tracking algorithm
- PileUp conditions

Good agreement!

Phys. Lett. B 751 (2015) 143-163

Now some new measurements!

Inclusive selection

Inelastic enhanced selection

Juan Manuel Grados Luyando

NSD enhanced selection

Juan Manuel Grados Luyando

DIS 2016

SD enhanced selection

One sided SD enhanced selection

Comparison 0.9 and 7 TeV, Inclusive enhanced selection

- ◆ First pseudorapidity measurement for different event selections at √s = 13 TeV
- Looking at dN/dη for different event selections gives extra information on the diffractive and non diffractive components —> Valuable input for MC tuning
 - ✦ All models give reasonable overall description of the data
 - PYTHIA8 CUETP8S1, PYTHIA8 MBR CUETP8M1, EPOS LHC and HERWIG++ UE-EE-4C describe the inelastic enhanced selection.
 - PYTHIA8 MBR CUETP8M1, PYTHIA8 CUETP8M1, and EPOS LHC good description of the Non-Diffractive enhanced selection.
 - ◆ 4C MBR provides the best description of the SD enhanced selection.
 - ♦ MONASH always over estimates the data.