Measurement of the ZZ(*) and Zy production cross sections at 8 TeV and 13 TeV and limits on anomalous triple gauge couplings with the ATLAS detector

Stamatios Gkaitatzis, (Aristotle University of Thessaloniki)

on behalf of the ATLAS Collaboration

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

Motivation

- Test electroweak sector of Standard Model
- Important background in studies of Higgs boson
- Sensitive to triple neutral-gauge boson couplings
 - Not allowed in SM

Cross Section Measurement Method

Measure the cross section in the detector's fiducial region...

$$\sigma^{fid}(pp \rightarrow ZZ \rightarrow 4l) = \frac{N_{obs} - N_{bkg}}{LC}$$

efficiency correction for detector effects obtained by Monte Carlo corrected by measured efficiencies in data

 $C = \frac{reconstructed events}{generated fiducial events}$

... and then extrapolate to the full phase space

$$\sigma^{tot}(pp \rightarrow ZZ) = \frac{N_{obs} - N_{bkg}}{L BR \cdot C \cdot A}$$
acceptance correction based on kinematic and geometric selection criteria
$$A = \frac{fiducial events}{total events}$$

ZZ@13TeV: Production & Event Selection

 $\Delta R_{l,l} = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$

For 4 leptons with the same flavor, select the pairs minimizing $|m_{1,2} - m_z| + |m_{3,4} - m_z|$ • Exactly four isolated ($\Delta R_{l,l} > 0.2$) prompt final state leptons (e,µ)

- All four leptons must have p_T > 20 GeV
- Electrons must satisfy |η| < 2.47
- At least one muon with $|\eta| < 2.4$, the remaining with $|\eta| < 2.7$
- 66 GeV < |m_{il}| < 116 GeV

Observed events		
Channel	Events	
4e	15	
2e2µ	30	
4μ	18	
Total	63	

 ~ 1

ZZ@13TeV: Cross Section

- Maximum-likelihood fit.
- Signal and background yields treated as Poisson variables.
- Systematic uncertainties treated as Gaussian nuisance parameters.

Measurement

 $L = 3.2 \text{ fb}^{-1}$

DOI: 10.1103/PhysRevLett.116.101801

11/04/2016

 $\sigma_{ZZ \to e^+e^-e^+e^-}^{\text{fid}} \\ \sigma_{ZZ \to e^+e^-\mu^+\mu^-}^{\text{fid}} \\ \sigma_{ZZ \to \mu^+\mu^-\mu^+\mu^-}^{\text{fid}} \\ \sigma_{ZZ \to \ell^+\ell^-\ell'^+\ell'^-}^{\text{fid}}$

4l@8TeV: Production & Event Selection

DIS2016

- Cross section measured in fiducial and extended phase space.
- Integrated luminosity for the analysis is 20.3 ifb.

6

4l@8TeV: Background composition & Yields

Background composition

	$2e2\mu$	4μ	4e	Process
Derived from data-driven methods	1.3 ± 0.5	0.68 ± 0.19	0.45 ± 0.24	$t\bar{t}$
	6.3 ± 1.4	5.3 ± 1.5	0.6 ± 0.29	Z + jets
	2.84 ± 0.34	0.83 ± 0.18	1.25 ± 0.18	$\operatorname{Diboson}$
Estimated from MC	1.46 ± 0.19	0.97 ± 0.14	0.67 ± 0.12	$\operatorname{Triboson}$
	1.7 ± 0.5 -	1.19 ± 0.32	0.62 ± 0.15	$Z{+}\mathrm{top}$

Channel	N^{Data}	$N_{ m expected}^{ m Total}$	$N_{\mathrm{non}-gg}^{\mathrm{signal}}$	$N_{gg}^{ m signal}$	$N_{ au}^{ m MC}$	$N_{ m bkg}$
4e	$85 \\ 156$	80 ± 4 150 2 + 2 9	68.4 ± 3.4 128 2 + 2 5	6.24 ± 0.31 11 00 ± 0.21	1.28 ± 0.06 2 18 ± 0.09	3.6 ± 0.5 9.0 ± 1.5
$2e2\mu$	235	$\frac{100.2 \pm 2.5}{205 \pm 5}$	120.2 ± 2.0 172 ± 5	11.00 ± 0.21 16.0 ± 0.4	2.10 ± 0.03 3.08 ± 0.13	13.6 ± 2.1
Total	476	435 ± 9	369 ± 9	33.3 ± 0.8	6.54 ± 0.14	26.2 ± 3.6

4l@8TeV: Cross Section

4ℓ	Measured $\sigma^{\rm fid}$ [f	b] SM $\sigma^{\rm fid}$	[fb] Measured	$\sigma^{ m ext}~[{ m fb}]$	SM σ^{ext} [fb]
4e	$7.4^{+0.9}_{-0.8}$ (stat) $^{+0.4}_{-0.3}$ (syst)	$^{+0.2}_{-0.2}$ (lumi) 6.9 ± 0	$0.4 17.8^{+2.1}_{-2.0} (stat) ^{+1.5}_{-1.1}$	$(syst) \stackrel{+0.5}{_{-0.5}} (lumi)$	16.4 ± 1.0
4μ	$8.7^{+0.8}_{-0.7}$ (stat) $^{+0.2}_{-0.2}$ (syst)	$^{+0.3}_{-0.2}$ (lumi) 8.3 ± 0	$17.3^{+1.5}_{-1.4} \text{ (stat)} ^{+0.9}_{-0.7}$	$(syst) \stackrel{+0.5}{_{-0.5}} (lumi)$	16.4 ± 1.0
$2e2\mu$	$15.9^{+1.1}_{-1.1}$ (stat) $^{+0.5}_{-0.4}$ (syst)	$^{+0.5}_{-0.4}$ (lumi) 13.7 ±	$0.9 37.7^{+2.7}_{-2.6} \text{ (stat) } ^{+2.5}_{-2.0}$	$(syst) \stackrel{+1.1}{_{-1.1}} (lumi)$	32.1 ± 2.0
Total			73^{+4}_{-4} (stat) $^{+4}_{-4}$ (s	yst) $^{+2}_{-2}$ (lumi)	65 ± 4
rential cross s	ection performed in	0.4 0.35 0.35 ATLAS	-+ Measurement Prediction	1.2 4 1.2	ATLAS + Me

Iterative Bayesian unfolding.

DOI: 10.1016/j.physletb.2015.12.048

$gg \rightarrow 4l$ Signal Contribution in $m_{4l} > 180$ GeV region

- Above m_{4l} > 180 GeV, gg → 4l is dominated by the continuum gg → ZZ → 4l process.
- m_{4l} is used as the discriminant w.r.t. LO prediction: $\mu_{gg} = \frac{\sigma(data)}{\sigma(LO)}$
- Extracted from likelihood fit using reconstructed m_{4l} distributions.
- Uncertainties treated as fully correlated between gg and qq processes.

Result:

 $\mu_{gg} = 2.4 \pm 1.0(stat.) \pm 0.5(syst.) \pm 0.8(theory)$

Corresponds to gg-initiated cross section of 3.1fb. Same relative uncertainties as μ_{qq} in fiducial volume including m_{qq} > 180 GeV.

Zγ@8TeV: Production & Event Selection

- l⁺l⁻γ Same flavor, opposite-charge isolated leptons
 - Isolated photon with E_τ^γ > 15 GeV
 - m_{ll} > 40 GeV
 - Lepton-photon separation:
 - ∆R > 0.7
- $v \overline{v} \gamma = E_{T^{miss}} > 100 \text{ GeV}$
 - E_T^γ > 130 GeV
 - |Δφ(p_T^{miss}, γ)| > π/2

Inclusive events: No requirements on jets (Unconstrained hadronization) Exclusive events: count jets with $E_{\tau} > 30$ GeV, $|\eta| < 4.5$, and classify events w.r.t Njets.

11/04/2016

DIS2016

Zγ@8TeV: Background Composition

- l+l-γ Background:
 - Dominated by hadronic jets misidentified as prompt photons.
 - Estimated using Data driven methods
 - Smaller backgrounds originate from $\tau\tau\gamma$, WZ, $t \bar{t} \gamma$
 - Estimated from simulation
- $v \overline{v} \gamma$ Background:
 - Mismeasured jet momenta
 - Wγ
 - Real E_τ^{miss}, misidentified photons from jets

Zγ@8TeV: Cross Section Measurement

Anomalous Triple Gauge Couplings (aTGC)

ZZ example: $d\sigma_{SM+TGC} = F_{00} + f_4^{\gamma} F_{01} + f_4^{Z} F_{02} + f_5^{\gamma} F_{03} + f_5^{Z} F_{04} + (f_4^{\gamma})^2 F_{11} + f_4^{\gamma} f_4^{Z} F_{12} + f_4^{\gamma} f_5^{\gamma} F_{13} + f_4^{\gamma} f_5^{Z} F_{14} + (f_4^{Z})^2 F_{22} + f_4^{Z} f_5^{\gamma} F_{23} + f_4^{Z} f_5^{Z} F_{24} + (f_5^{\gamma})^2 F_{33} + f_5^{\gamma} f_5^{Z} F_{34} + (f_5^{Z})^2 F_{44}$

- ATGCs for Z γ production can be parametrized by four CP-violating (h_1^{v} , h_2^{v}) and four CP-conserving (h_3^{v} , h_4^{v}) complex parameters where V = Z, γ .
- SM prediction for the parameters is 0.
- Limits from this study are expressed in terms of the CP-conserving h₃^v, h₄^v, h₃^z, h₄^z.
 - The aTGC contribution to the cross section is expressed as second order polynomial of these couplings.
- Limits set for Λ = ∞ and Λ = 4 TeV.

 $\frac{h_{30}^{v}}{\left(1+\frac{s}{\Lambda^{2}}\right)^{n}} \quad \begin{array}{l} \Lambda \text{ is the scale at which} \\ \text{contributions from} \\ \text{new physics become} \\ \text{observable} \end{array}$

Exclusive, zero-jet selection used to set the limits.
 DIS2016

Zγ@8 TeV Comparison of SM with aTGC

Photon transverse energy for exclusive $v \bar{v} \gamma$ events.

aTGC inclusion increases the yield in the high $E_{t^{\gamma}}$ region.

Limits on ZZ γ (h_3^z , h_4^z) and Z $\gamma\gamma$ (h_3^γ , h_4^γ) aTGCs

15

Conclusions

- ZZ production cross section measured at 13 TeV (3.2 fb⁻¹).
 - Total uncertainty ~15%, statistically dominated.
 - Agreement with NNLO SM prediction.
- 4l production cross section measured at 8 TeV (20.3 fb⁻¹).
 - $\sigma_{tot} = 73 \pm 4 \pm 4 \pm 2 \text{ fb}$
 - Compatible with SM prediction of 65 ± 4 fb
- Zγ production cross section measured at 8 TeV (20.3 fb⁻¹).
 - Measurement compatible with the NNLO SM prediction.
- No deviation from SM predictions \rightarrow aTGC limits on Zy production.
 - Most stringent limits to date.

Measurement of the ZZ production cross section in pp collisions at sqrt(s)=13 TeV with the ATLASw detector	arXiv:1512.05314
Measurements of four-lepton production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector	arXiv:1509.07844

Backup Slides

$ZZ \rightarrow 4e$ candidate event

ZZ at 13 TeV Event Display & Background

Main background sources:

- ZZ→ 2l2τ, 4τ
- Nonhadronic triboson processes
- Lepton misidentification

ZZ at 13 TeV 4l Kinematics

DIS2016

ZZ at 13 TeV Background Composition & Yields

Background process	Expected events
ZZ → 2ℓ2τ, 4τ ZZZ, WZZ, WWZ tīZ 1−2 misidentified leptons*	$\left.\begin{array}{c} 0.07 \pm 0.02 \\ 0.17 \pm 0.05 \\ 0.30 \pm 0.09 \\ 0.09_{-0.04}^{+1.08} \end{array}\right\}$ Estimated from MC
Total	$0.62_{-0.11}^{+1.08}$ Dominated by small number of events in control samples

• • •	•		
			C
	וכ	ιU	2

Channel	4e	2e2µ	4μ	Total 4ℓ
Observed Expected background	$15\\0.20\pm0.05$	$30 \\ 0.25^{+0.40}_{-0.05}$	$18\\0.17^{+1.00}_{-0.04}$	$63 \\ 0.62^{+1.08}_{-0.11}$

ZZ at 13 TeV Efficiency & Acceptance

C_{zz} corrects measured cross section for detector effects					
	4e	2e2µ		4μ	
C_{ZZ}	0.55 ± 0.02	0.63 ± 0	.02	$0.81 \pm$	0.03
C _{zz} U	ncertaintie	S			
Source			4e	2e2µ	4μ
Statistic	cal		0.7	0.5	0.5
Theoretical 2.5 2.5 2.5			2.5		
Experimental efficiencies 2.3 2.2 2.			2.0		
Momentum scales and resolutions 0.4 0.2 0.1			0.1		
Total 3.5 3.3 3.2			3.2		

$$\sigma^{tot} = \frac{N_{obs} - N_{bkg}}{L \cdot BR \cdot C \cdot A}$$

A₇₇ extrapolates fiducial cross section to total cross section

A_{zz} = 0.39 ± 0.02 for all channels

A ₇₇	Uncertainties

Source	Uncertainty
Statistical	0.9
Generator	3.4
Parton shower	0.8
PDFs	0.8
QCD scales	0.3
Total	3.7

ZZ at 13 TeV Fiducial Cross Section Results

4l at 8TeV Fiducial and Extended Phase Space

Fiducial Phase Space

Lepton selection				
Muons:	$p_{\rm T} > 6 {\rm GeV}, \eta < 2.7$			
Electrons:	$p_{\rm T} > 7 {\rm GeV}, \eta < 2.5$			
Lepton pairing				
Leading pair:	SFOS lepton pair with			
	smallest $ m_Z - m_{\ell\ell} $			
Sub-leading pair:	The remaining SFOS			
	with the largest $m_{\ell\ell}$			
For both pairs:	$p_{\mathrm{T}}^{\ell^+\ell^-} > 2 \mathrm{GeV}$			
Event selection				
Lepton $p_{\mathrm{T}}^{\ell_1,\ell_2,\ell_3}$:	$> 20, 15, 10(8 \text{ if } \mu) \text{ GeV}$			
Mass requirements:	$50 < m_{12} < 120 \text{ GeV}$			
	$12 < m_{34} < 120 \text{ GeV}$			
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 \ (0.2)$			
	for same- (different-)			
	flavour leptons			
J/ψ veto:	$m(\ell_i^+, \ell_j^-) > 5 \text{ GeV}$			
4ℓ mass range:	$80 < m_{4\ell}^{2} < 1000 { m GeV}^{2}$			

Extended phase space

- 80 < m_{4l} < 1000GeV
- m₁₁ > 4 GeV
- P_T^z > 2 GeV
 Four leptons with p_T > 5 GeV and |ŋ| < 2.8

Common phase space where electrons and muons have the same geometric and kinematic acceptance

4l at 8 TeV Efficiency & Acceptance

	4e	2e2µ	4μ			
C _{4l}	53.3%	67.7%	82.	.2%		
C _{zz} Uncertainties						
Sources		Δ	$C_{4\ell}/C_4$	ŧl		
		4e	4μ	$2e2\mu$		
Experimental (e)		4.8%	-	2.3%		
Experimental (μ)		-	1.8%	0.9%		
Theoretical		0.1%	0.1%	0.2%		
Extra gg	corrections	0.6%	0.2%	0.3%		
Combined	d uncertainty	4.9%	1.9%	2.5%		

a ^{ext}	N_{obs} –	- N _{bkg}
0 —	$L \cdot BR$	$\cdot C \cdot A$

	4e	2e2µ	J 4µ				
A _{4l}	41.6%	42.2	% 50	.3%			
A _{zz} Uncertainties							
		$\Delta A_{4\ell}/A_{4\ell}$					
Sources	4	$e = 4\mu$	$2e2\mu$				
Theoretical	1.2	1.0%	1.6%				
Extra gg corre	ections 4.0	% 3.0%	3.9%				
	$\Delta(A_{4\ell} \times C_{4\ell}) / (A_{4\ell} \times C_{4\ell})$						
Theoretical	1.4	% 1.1%	1.7%				

Extra gg corrections 4.6% 3.2%

11/04/2016

4.2%

Particle reconstruction for ZZ

- Muons
 - Matching a track in the MS to a track in ID.
 - Momentum calculated by combining information on the two systems, correcting for energy deposition in the calorimeter.
 - For limited coverage regions, match calorimeter signal consistent with muons to ID tracks
- Electrons
 - Matching energy deposition in calorimeter with ID track.
 - Algorithm uses several identification criteria relying on shapes of EM showers.

ZZ(*) Signal Simulation

- POWHEG-BOX MC for qqbar, ggF and VBF
 - Includes perturbative QCD corrections at NLO
 - qg initial state and NLO contribution to qqbar process
- PYTHIA8 for VH and ttbarH
- MFCM (LO) for non-resonant ggF
- MADGRAPH (LO) for non-resonant VBF and VBS