

SHiP: a new facility with a dedicated detector for studying v_{τ} properties and nucleon structure functions

Annarita Buonaura – University of Naples & INFN

DIS 2016 – Hamburg, Germany 11-15 April, 2016

Physical Motivation

- Current model for description of particle physics world: Standard Model (SM)
- Three open questions:
 - Neutrino masses
 - Baryon Asymmetry in the Universe (BAU)
 - Presence of Non-baryonic Dark Matter

- Scale of new physics still unknown
- Long lived neutral (hidden) particles predicted in many BSM models.
- Two ways to search for new physics:
 - energy frontier
 - heavy particles
 - high energy events

SHiP

experiment

- intensity frontier
 - light particles
 - very rare events

The SHiP experiment

CERN-SPSC-2015-016 SPSC-P-350 8 April 2015

Search for Hidden Particles

Steared uset-couthwest; and encountered a hearier can then they had not with before in the chole vayage. Saw paralelar and a preen with near the vected. The crew of the Paira can a ence and a log, they also giveled up a stick which appeared to have been canced with an iron tool, a givece of cane, a glant which prover on low, and a board. The crew of the Nina can other signs of law, and a todk loaded with roce berrier. These signs encouraged they, and they all prew cheart is Saked this day till cuncet, transformed means.

After caret steered their original course west own valued tracker rules as how till two knows after richight, poing winety rules, which are transty-two leagues and a haft and as the Parta westher suffered value, and least advand of the Advird,

the discovered land

Proposal for a new facility at the CERN SPS accelerator:

- hidden sector detector
- v_{τ} facility
- 235 experimentalists from 45 institutes and 15 countries + CERN
- Techinical Proposal submitted in April 2015 (arxiv.org/abs/1504.04956)
- Physics Proposal signed by 85 theorists (arxiv.org/abs/1504.0855)
- SPSC positive recommendation in January 2016

Technical Proposal

The SHiP Facility

- General purpose fixed target facility at CERN
 - 400 GeV proton spills (4 x 10¹³ p.o.t.) from a dedicated beam line at the SPS accelerator

- Location: Prevessin North Area site
- Sharing of the TT20 transfer line and slow extraction mode with existing facilities
- Minimal modification to the SPS complex.

The SHiP detector layout

5

6

A DETECTOR TO SEARCH FOR HIDDEN PARTICLES

Physics goals

- Explore Hidden Portals and extension of the SM incorporating long-lived and very weakly interacting particles
 - Vector portal (dark, hidden, para-photons)
 - Scalar portal
 - Neutrino portal: vMSM (Neutrino Minimal Standard Model)¹
 - Minimal extension of the SM fermion sector by three RH (Majorana) Heavy Neutral Leptons (HNL): N₁, N₂, N₃.

- Lightest singlet N_1 (mass \approx KeV): good dark matter candidate.
- N_2 , N_3 (mass in 100 MeV GeV region):
 - "give" masses to neutrinos;
 - explain baryon asymmetry

Experimental Requirements

PRODUCTION

Hidden particles produced in decays of charmed and beauty hadrons:

T.Asaka, M.Shaposhnikov PL B620 (2005) 17

- Maximize neutrinos from charmed hadrons
- Minimize neutrinos from π and K

Hybrid target: blocks of titaniumzirconium doped molybdenum (TZM) followed by blocks of pure tungsten Hadron Stopper: 5m of Fe

DETECTION

Hidden particles can decay in SM particles:

Final states	Models tested
$\pi l,Kl, ho l,l=(e,\mu, u)$	u portal, HNL, SUSY neutralino
$e^+e^-, \mu^+\mu^-$	V, S and A portals, SUSY s-goldstino
$\pi^+\pi^-, K^+K^-$	V, S and A portals, SUSY s-goldstino
$l^+l^-\nu$	HNL, SUSY neutralino

50 m long decay volume O(5)m diameter, equipped with detectors at the far end

8

Annarita Buonaura, on behalf of the SHiP collaboration - DIS2016

9

Background rejection

• Muon Flux

- 48 m long active muon shield
 - veto system around the decay vessel
- Proton spills prepared with slow beam extractions (~1s)
 - Uniform extractions
- v interactions inside the vessel

Combinatorial

- v interactions in
 the vessel
 proximity
- Low pressure decay vessel
 - Light taggers located upstream and at the beginning of the HS fiducial volume

After selections: ≤ 0.1 bkg/ 5 y

10

Sensitivities

Neutrino Portal (HNL)

- Critically improving present limits in U^2
- Access masses up to m_B
- Probe region of special interest:
 - left open by cosmological observations (BBN)
- Sensitivity in all U_e , U_μ , U_τ channels

Vector Portal

Axion Portal

Annarita Buonaura, on behalf of the SHiP collaboration - DIS2016

12

The neutrino detector

13

ν_τ Physics Program

Motivation

- Less known particle in the Standard Model
- First observation by DONUT at Fermilab in 2001 with 4 detected candidates, *Phys. Lett. B504 (2001) 218-224*
- 9 events (with an estimated background of 1.5) were reported in 2008
- 5 v_τ candidates reported by OPERA for the discovery (5.1\sigma result) of v_τ appearance in the CNGS neutrino beam
- Anti- v_{τ} never observed

SHiP neutrino program

- ~8k expected v_{τ} and ~4k anti- v_{τ} interactions in the target
 - First observation of anti- v_{τ}
 - Sufficient statistics to perform v_{τ} and anti- v_{τ} cross section measurement.
 - First measurement of structure function F₄ and F₅ entering in DIS neutrino-nucleon cross section

Experimental requirements

Taking advantage of the OPERA experience

Identify all 3 neutrino flavour

Emulsion Cloud Chamber technique

The neutrino target

Neutrino Flavour Identification in the ECC

- v_{μ} identification: muon reconstruction in the magnetic spectrometer
- v_e identification: electron shower identification in the brick
- v_{τ} identification: disentanglement of τ production and decay vertices

Separation v_{τ} /anti- v_{τ}

The Compact Emulsion Spectrometer

- three emulsion films interleaved with two, 15-mm thick, Rohacell layers
- capable of measuring the hadron track curvature
- 90% efficiency for hadronic τ daughters reaching the end of ECC brick in a 1 T field
- sagitta method used to discriminate between positive and negative charge

Performances

- electric charge can be determined with better than 3 σ level up to 10 GeV/c
- Momentum estimated from the sagitta $\Delta p/p < 20\%$ up to 12 GeV/c

Event Time- Stamp

Target trackers (TT)

- Features:
 - Provide Time stamp
 - Link track information in emulsions to signal in TT
 - Link muon track information in v target to μ magnetic spectrometer
- Requirements in 1T field:
 - 100 μ m position resolution on both coordinates
 - high efficiency (>99%) for angles up to 1 rad
- Possible options:
 - Scintillating fibre trackers
 - Micro-pattern gas detectors (GEM, Micromegas)
- Detector layout:
 - 12 target planes interleaved by the 11 brick walls at a few mm distance
 - 1st plane used as veto
 - Transverse size of about 2 x 1 m2

μ Identification

- μ come from:
 - $\tau \rightarrow \mu$ decays
 - v_{μ} CC interactions
- μ identification at 1ry vertex crucial for bkg rejection

- Dipolar magnetic (1.52T) spectrometer
 - 12 iron layers/arm (5cm each)
 - 11 RPC layers/arm (2cm each)
 - 6 Drift Tube Tracker Planes
- Momentum resolution better than 25%
- Charge measurement efficiency ~ 94%

20

Neutrino Fluxes

- SHiP experimental setup ideally suited to perform studies on neutrino and anti-neutrino physics.
- High charmed hadrons decay rates ⇒ high ordinary neutrino fluxes

v energy spectra @ beam dump

	Φ	<e> (GeV)</e>
ν _μ	4.4x10 ¹⁸	1.4
V _e	2.1x10 ¹⁷	3
ντ	3.3x10 ¹⁵	9
Anti- v_{μ}	2.8x10 ¹⁸	1.5
Anti-v _e	1.6x10 ¹⁷	4
Anti-ν _τ	3.3x10 ¹⁵	8

Rates for five years of nominal operation with 2×10^{20} protons on target

Neutrino Fluxes

- SHiP experimental setup ideally suited to perform studies on tau neutrino and anti-neutrino physics.
- High charmed hadrons decay rates ⇒ high ordinary tauneutrino fluxes

Energy spectra of DIS CC interacting v

	Φ	<e> (GeV)</e>
ν _μ	1.7x10 ⁶	29
V _e	2.5x10 ⁵	46
ν _τ	7.6x10 ³	59
Anti- v_{μ}	6.7x10 ⁵	28
Anti-v _e	9.0x10 ⁴	46
Anti-ν _τ	3.9x10 ³	58

Rates for five years of nominal operation with 2×10^{20} protons on target

Physics with DIS

- High rates of Deep Inelastic Scattering interactions from all three neutrino flavours on target nucleons expected.
 - Structure function estimation

$$\frac{d^2\sigma}{dx \ dy} = \frac{G_F^2 M_N E_\nu}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2} \right)^2 \left[(xy^2 + \frac{m_l^2 y}{2E_\nu M_N} F_1 + (1 - y - \frac{M_N xy}{2E_\nu} - \frac{m_l^2}{4E_\nu^2} F_2) \right]$$

$$\pm \left(xy(1 - \frac{y}{2}) - \frac{m_l^2 y}{4E_\nu M_N} \right) F_3 + \frac{m_l^2 (m_l^2 + Q^2)}{4E_\nu^2 M_N^2 x} F_4 - \frac{m_l^2}{E_\nu M_N} F_5 \right]$$

Estimation through v/anti-v data subtraction Dependent on the lepton mass. Relevant only for v_t interactions

- From v_{τ} and anti- v_{τ} CC interactions:
 - First evaluation of F_4 and F_5 not accessible with lighter neutrinos
- From v_{μ} and anti- v_{μ} CC interactions:
 - Estimation of F₃

24

Physics with DIS

- High rates of Deep Inelastic Scattering interactions from all three neutrino flavours on target nucleons expected
 - Charm production with v and anti-v scattering
 - Charmed hadrons produced at a level of a few % in ν_μ and ν_e CC interactions
 - s-quark content of the nucleon: both v and anti-v are a good probe in interactions where a charmed hadron is produced

v_e physics

- Study of v_e cross section at high energies
- Possibility to normalize the charm production at the beam dump

Sensitivity to F₄ and F₅

Through v_{τ} and anti- v_{τ} identification: unique capability of being sensitive to F_4 and F_5

Sensitivity to s-quark

- Charmed hadrons identified through the observation of their decay.
- Expected v-induced charm yield in 5 years run:

$$f(charm) = \frac{\int \Phi_{\nu_{\mu}} \sigma_{\nu_{\mu}}^{CC} \left(\frac{\sigma_{charm}}{\sigma_{\nu_{\mu}}^{CC}}\right) dE}{\int \Phi_{\nu_{\mu}} \sigma_{\nu_{\mu}}^{CC} dE} \approx 4\%$$
$$f(charm) = \frac{\int \Phi_{\nu_{e}} \sigma_{\nu_{e}}^{CC} \left(\frac{\sigma_{charm}}{\sigma_{\nu_{e}}^{CC}}\right) dE}{\int \Phi_{\nu_{e}} \sigma_{\nu_{e}}^{CC} dE} \approx 6\%$$

- Charmed hadron production in antineutrino interactions selects antistrange quark in the nucleon
 - Improvement achieved on s+/sversus x
 - Significant gain with SHiP data obtained in the x range between 0.03 and 0.35 complementary to that of ATLAS and CMS (sensitive at lower x)

	Expected events
ν_{μ}	$6.8 \cdot 10^4$
$ u_e$	$1.5 \cdot 10^4$
$\bar{ u_{\mu}}$	$2.7 \cdot 10^4$
$\bar{ u_e}$	$5.4 \cdot 10^3$
total	$1.1 \cdot 10^5$

CONCLUSIONS

- Unlike LHC exploring the energy frontier, SHiP intends to explore the intensity frontier
 - Long-lived and very weakly interacting particles are searched for
 - Sterile neutrinos (Heavy Neutral Leptons)
 - Dark photons
 - Paraphoton
 - SUSY: Sgoldstino, Light neutralino
 - Compact neutrino detector to perform SM physics studies
 - Cross-section measurement for v_{τ} and anti- v_{τ} interactions
 - Estimate structure functions (F₄ and F₅) from charged current neutrino nucleon deep-inelastic scattering
 - Study v-induced charm events
 - Study s-quark content of the nucleon
- Technical and Physics proposal submitted to the SPSC in April 2015
- Positive recommendation from the SPSC in January 2016

BACK-UP

Time scale

- Form SHiP Collaboration Technical Proposal submission ٠ Technical Design Report submission 2018 ٠ Building and installation 2018-2023 Commision 2023 • Data taking and analysis 2026 ٠
- December 2014 🗸 April 2015 🗸

CERN Accelerator Complex

proposed location by CERN beams and support department

Hidden Particles Background

Expected number of background events from MC simulation for 5 years of data taking.

	ratio bet	tween the equivalent	t MC statistics and the total
	/ expecte	d number of events	
Background source	Statistical factor	Expected background	
$\nu \ (p > 10.0 \text{GeV})$	35.	< 0.07	-
$\nu \ (4.0 \text{GeV}$	~ 1	0 (MC)	
$\nu \ (2.0 \text{GeV}$	0.07	0 (MC)	0 bkg events observed in the MC
μ DIS HS	~ 1	0 (MC)	o bkg events observed in the Mc
μ DIS wall	0.001	0 (MC)	
μ Combinatorial	10 ⁴	< 0.1	
μ Cosmics ($p < 100$ GeV)	0.2	0 (MC)	
μ Cosmics ($p > 100 \text{GeV}$)	800.	< 0.1	
μ Cosmics DIS ($p > 100 \text{GeV}$)	10 ³	< 0.1	
μ Cosmics DIS (10 GeV< $p < 100 {\rm GeV})$	~ 1	0 (MC)	

- no evidence of significant impact of any of these backgrounds on the experiment
- any evidence for any source of irreducible background

Assumed a level of background of 0.1 events for the entire run of the experiment

 3σ evidence if 2 events of HNL are observed

Muon background

- Heavy target stops hadrons before they decay. After the target and the hadron absorber only muons survive
- Muons come mainly from $\eta,\,\eta'$ and ω
- Without muon filter rate would be 5×10^9 muons/spill (1 spill is 5×10^{13} POT)

32

33

Active Muon-Shield

- Muon flux driven by the HS background and emulsion-based neutrino detector
- Active muon shield based entirely on magnet sweeper with a total field integral B = 86.4 Tm
- Realistic design of sweeper magnets in progress
- Challenges: flux leakage, constant field profile, modeling magnet shape
- Rate reduction: from 1010 to 104 muons/spill
- Negligible flux in terms of detector occupancy

34

Decay volume and spectrometer

Estimated need for vacuum: ~10-3 mbar

Vacuum Vessel

- 10 m x 5 m x 60 m
- Walls thickness: 8 mm (Al) / 30 mm (SS)
- Walls separation: 300 mm
- Liquid scintillator (LS) volume (~360 m3) readout by WLS optical modules (WOM) and PMTs
- Vessel weight ~ 480 t

Timing detector

- large area
- required resolution < 100 ps

2 options considered

Challenges:

120 bars x 11 cm (1 columns x 3.05 m (10 cm overlap) = 6 m

Multi-gap resistive plate chambers (MRPC)

- ALICE ToF and EEE project
- 61 chambers x 120 cm strips, 3 cm pitch
- 50 ps resolution achievable

Scintillator bars

- NA61/SHINE ToF
- 100 ps resolution
- size of scint. counter 120 x 10 x 2.5 cm³
- total active area 1.2 x 7.2 m²

36

Calorimeters

ECAL

- Almost elliptical shape (5 m x 10 m)
- > 2876 Shashlik modules
- 2x2 cells/modules, width=6 cm
- 11504 independent readout channels

HCAL

- Matched with ECAL acceptance
- 2 stations
- 5 m x 10 m
- 1512 modules
- 24x24 cm² dimensions
- Stratigraphy: N x (1.5 cm steel+0.5 cm scint)
- 1512 independent readout channels

Dimensions $60 \times 60 \text{ mm}^2$ Radiation length17 mmMoliere radius36 mmRadiation thickness25 X₀Scintillator thickness1.5 mmLead thickness0.8 mmEnergy resolution1%

37

Muon System

Based on scintillating bars, with WLS fibers and SiPM readout

Technical Proposal (preliminary design)

- 4 active stations
- transverse dimensions: 1200x600 cm2
- -x,y view
- 3380 bars, 5x300x2 cm3/each
- 7760 FEE channels
- 1000 tons of iron filters

Requirements:

- 1) High-efficiency identification of muons in the final state
- 2) Separation between muons and hadrons/ electrons
- 3) Complement timing detector to reject combinatorial muon background

Neutrino fluxes

SHiP experimental setup ideally suited to perform studies on neutrino and antineutrino physics.

High charmed hadrons decay rates \Rightarrow high ordinary neutrino fluxes

	<e></e>	Beam	<e></e>	Neutrino	$\langle E \rangle$	CC DIS
	(GeV)	dump	(GeV)	target	(GeV)	interactions
N_{ν_e}	3	$2.1 \cdot 10^{17}$	28	$3.6\cdot10^{15}$	46	$2.5\cdot 10^5$
$N_{\nu_{\mu}}$	1.4	$4.4\cdot10^{18}$	8	$5.2\cdot10^{16}$	29	$1.7\cdot 10^6$
$N_{\nu_{\tau}}$	9	$2.8\cdot 10^{15}$	28	$1.4\cdot 10^{14}$	59	$6.7\cdot 10^3$
$N_{\overline{\nu}_e}$	4	$1.6\cdot10^{17}$	27	$2.7\cdot 10^{15}$	46	$9.0\cdot 10^4$
$N_{\overline{\nu}_{\mu}}$	1.5	$2.8\cdot 10^{18}$	8	$4.0\cdot10^{16}$	28	$6.7\cdot 10^5$
$N_{\overline{ u}_{ au}}$	8	$2.8\cdot 10^{15}$	26	$1.4\cdot 10^{14}$	58	$3.4\cdot 10^3$

Rates for five years of nominal operation with 2 x 10²⁰ protons on target

Target magnetization

GOLIATH MAGNET

CERN H4 beam line inside 2389 PPE 134 zone

- Within the blue curves $B \approx 1.5 T$
- Within the red curves B >=1 T

- 1 Tesla vertical magnetic field
- few m³ volume with constant magnetization

Magnetic field behavior in the target region

39

Track reconstruction in Emulsion Films

- Nuclear emulsions consist of AgBr crystals scattered in a gelatin binder.
- Passage of charged particles sensitises AgBr crystals along the path.
- Sensitesed crystals act as latent image centers.
- With development there is the growth of silver clusters => visible to optical microscope

European Scanning System ESS

Measuring Momentum with ECC

- Total length of a brick ~ 10 X_0 ($X_0 = 5.6$ mm).
- Scattering is dominated by the lead
- Momentum measurement by MCS can be carried out in 2 ways:
 - track position (coordinate method)
 - track angle (angular method)

$$\theta_0 = \frac{13.6}{(pc\beta)} \times \sqrt{\frac{x}{X_0}} \times \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right)\right]$$

Momenta up to 8 GeV/c can be measured with a resolution better than 30%

Deviation of the trajectory from a straight line

Electron/pion identification

- The high granularity of the emulsions allows excellent e.m. shower identification.
- The separation of electrons and pions ٠ obtained by exploiting different behavior in passing through and interacting in an ECC.
- 2 complementary approaches: •
 - study total number of tracks and different longitudinal and transverse profiles
 - study of Multiple Coulomb Scattering • longitudinal profiles
 - going through a material, the • energy remains almost constant for pions while strongly decreases for electrons

π contamination

Detector performances

μ identification

- Requirements:
 - 1. track crossing 3 RPC layers in the ARM1 of the Magnetic Spectrometer
 - 2. track crossing the Goliath Iron and reaching at least the first HPT plane
- The usage of the HPT plane for the muon identification in case 2. increases the muon identification efficiency of about 2%
- Muon identification efficiency of about 90% for both charm events (and for the muonic decay channel of the τ lepton)

Charge measurement

- Charge of the hadrons is measured by the Compact Emulsion Spectrometer (CES)
- Charge of the muons by the magnetic spectrometer and the CES

$$\epsilon^{h}_{charge} = 70\% \qquad \epsilon^{\mu}_{charge} = 94\% \qquad \epsilon^{3h}_{charge} = 49\%$$

Correct assignment efficiencies

$$\omega^h_{charge} = 0.5\% \qquad \omega^\mu_{charge} = 1.5\% \qquad \omega^{3h}_{charge} = 1.0\%$$

Charge Misidentification probabilities

Costs

Item	Cost (MCHF)		
Facility		135.8	
Civil engineering	57.4		
Infrastructure and services	22.0		
Extraction and beamline	21.0		
Target and target complex	24.0		
Muon shield	11.4		
Detector		58.7	
Tau neutrino detector	11.1		
Hidden Sector detector	46.8		
Computing and online system	0.2		
Grand total		194.5	

