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Physical	Motivation

• Current	model	for	description	of	particle	physics	world:	Standard	Model	(SM)
• Three	open	questions:

• Neutrino	masses	
• Baryon	Asymmetry	in	the	Universe	(BAU)
• Presence	of	Non-baryonic	Dark	Matter

• Scale	of	new	physics	still	unknown
• Long	lived	neutral	(hidden)	particles	

predicted	in	many	BSM	models.
• Two	ways	to	search	for	new	physics:

• energy	frontier
• heavy	particles
• high	energy	events

• intensity	frontier
• light	particles
• very	rare	events
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The	SHiP	experiment
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• Proposal	 for	a	new	facility	at	the	CERN	
SPS	accelerator:

• hidden sector detector
• ντ facility

• 235	experimentalists	from	45	institutes	
and	15	countries	+	CERN

• Techinical Proposal submitted in	April
2015 (arxiv.org/abs/1504.04956)

• Physics	Proposal signed by 85	
theorists (arxiv.org/abs/1504.0855)

• SPSC	positive	 recommendation	 in	
January	2016



The	SHiP	Facility

• General	purpose	 fixed	target	facility	at	CERN
• 400	GeV proton	spills	(4	x	1013 p.o.t.)	from	a	dedicated	beam	line	at	the	

SPS	accelerator

• Location:	Prevessin North	Area	site
• Sharing	of	the	TT20	transfer	line	and	slow	

extraction	mode	with	existing	facilities
• Minimal	modification	 to	the	SPS	complex.
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The	SHiP	detector	layout
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A	DETECTOR	TO	SEARCH	FOR	
HIDDEN	PARTICLES
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Physics	goals
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• Explore	Hidden	Portals and	extension	of	the	SM incorporating	 long-lived	and	very	
weakly	interacting	particles

• Vector	portal	(dark,	hidden,	 para-photons)
• Scalar	portal
• Neutrino	portal:	νMSM (Neutrino	Minimal	Standard	Model)1

• Minimal	extension	of	 the	SM	fermion	sector	by three	RH	(Majorana)	
Heavy	Neutral	Leptons	(HNL):	N1,	N2,	N3.

• Lightest	singlet	N1	(mass	≈	KeV):	good	dark	matter	candidate.
• N2,	N3 (mass	in	100	MeV	- GeV region):

• "give"	masses	to	neutrinos;
• explain	baryon	asymmetry 1	D.Gorbunov,	M.Shaposhnikov JHEP	0710	(2007)	015



Experimental	Requirements

T.Asaka,	M.Shaposhnikov PL	B620	(2005)	17

Hidden	particles	produced	 in	decays	
of	charmed	and	beauty	hadrons:

Hidden	particles	can	decay	in	SM	particles:

Typical	lifetimes	>	10	μs
⇒ Decay	length	O(km)• Maximize	neutrinos	 from	charmed	

hadrons
• Minimize	neutrinos	 from	π	and	K

50	m	long	decay	volume O(5)m	diameter,	
equipped	 with	detectors	at	the	far	end

Hybrid	 target:	blocks	of	 titanium-
zirconium	doped	molybdenum	 (TZM)	
followed	by	blocks	of	pure	tungsten
Hadron	Stopper:	5m	of	Fe

PRODUCTION DETECTION
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Background	rejection
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• Muon Flux • 48	m	long	active	muon
shield

• veto	system	around	 the	
decay	vessel

• Proton	spills	prepared	
with	slow	beam	
extractions	(~1s)

• Uniform	extractions

• Combinatorial

• ν interactions	
inside	the	vessel

• Low	pressure	decay	vessel

• ν interactions	in	
the	vessel	
proximity

• Light	taggers	located	
upstream	and	at	the	
beginning	 of	 the	HS	fiducial
volume

After	selections:
≤	0.1	bkg/	5	y



Sensitivities
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Neutrino	Portal	(HNL)

• Critically	improving	present	limits	in	𝑈2

• Access	masses	up	to	mB
• Probe	region	of	special	interest:

• left	open	by	cosmological	
observations	 (BBN)

• Sensitivity	 in	all	Ue,	Uμ,	Uτ channels

Scalar	Portal Vector	Portal Axion Portal



Sensitivities
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Neutrino	Portal	(HNL)

• Critically	improving	present	limits	in	𝑈2

• Access	masses	up	to	mB
• Probe	region	of	special	interest:

• left	open	by	cosmological	observations	
(BBN)

• explain	ν masses
• explain	matter-antimatter	asymmetry	(BAU)

• Sensitivity	 in	all	Ue,	Uμ,	Uτ channels

Scalar	Portal Vector	Portal Axion Portal

…and	so	
much	more…



NEUTRINO	DETECTOR	FOR	A	
NEUTRINO	PHYSICS	PROGRAM
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The	neutrino	detector

13

10	m

Implementation	in	dedicated	
CERN	framework	(FairSHIP)



ντ Physics	Program

• Less	known	particle	in	the	Standard	Model
• First	observation	by	DONUT	at	Fermilab in	2001	with	4	detected	candidates,	
Phys.	Lett.	B504	(2001)	218-224

• 9	events	(with	an	estimated	background	 of	1.5)	were	reported	 in	2008
• 5	ντ candidates	reported	by	OPERA	for	the	discovery	(5.1σ	result)	of	ντ
appearance	in	the	CNGS	neutrino	 beam

• Anti- ντ never	observed	 	

14

Motivation

• ~8k	expected	ντ and	~4k	anti-ντ interactions	in	the	target	
• First	observation	of	anti-ντ
• Sufficient	 statistics	to	perform	ντ and	anti-ντ cross	section	measurement.
• First	measurement	of	structure	function	F4 and	F5 entering	in	DIS	

neutrino-nucleon	cross	section

SHiP	neutrino	program



Experimental	requirements
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Dimensions	must	be	adapted	to	the	region	
cleared	by	the	muon active	shield

Target	must	be	optimized	 to	induce	 the	
maximum	number	of	ντ interactions

Disentangle	τ production	 and	decay	vertices

Distinguish	neutrinos	 from	anti-neutrinos

Muon identification,	charge	and	momentum	
measurement	to	discriminate	
signal/background	 processes

Identify	all	3	neutrino	 flavour

Compact

High	density

Micron	position	 resolution

Magnetised	 target

Muon Magnetic	
spectrometer

Emulsion	Cloud	Chamber	
technique

Taking	advantage	of	the	OPERA	experience



The	neutrino	target
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Fundamental	unit: Brick
ν target	+	vertex	detector	

•Emulsion	Cloud	Chamber	technology
•Lead	plates (high	 density	material	for	the	
interaction)	interleaved	with	emulsion	films
(tracking	devices	with	µm	resolution)



Neutrino	Flavour Identification	
in	the	ECC

17

• νμ identification:	muon reconstruction	 in	the	magnetic	spectrometer
• νe identification:	electron	shower	identification	 in	the	brick
• ντ identification:	disentanglement	of	τ production	 and	decay	vertices



Separation	ντ /anti-ντ

18

• three	emulsion	 films	interleaved	with	
two,	15-mm	thick,	Rohacell layers

• capable	of	measuring	 the	hadron	track	
curvature

• 90%	efficiency	for	hadronic τ daughters	
reaching	the	end	of	ECC	brick	in	a	1	T	
field

• sagitta method	used	 to	discriminate	
between	positive	and	negative	charge

The	Compact	Emulsion	Spectrometer

• electric	charge	can	be	determined	 with	
better	than	3	σ level	up	 to	10	GeV/c

• Momentum	 estimated	from	the	sagitta
Δp/p	<	20%	up	to	12	GeV/c

Performances



Event	Time- Stamp
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• Features:
• Provide	Time	stamp	
• Link	track	information	in	emulsions	to	signal	in	TT
• Link	muon track	information	in	ν target	to	𝜇 magnetic	spectrometer

• Requirements	in	1T	field:
• 100	𝜇m	position	resolution	on	both	coordinates
• high	efficiency	(>99%)	for	angles	up	to	1	rad

• Possible	options:
• Scintillating	fibre trackers
• Micro-pattern	gas	detectors	(GEM,	Micromegas)

• Detector	layout:
• 12	target	planes	interleaved	by	the	11	brick	walls	at	a	few	mm	distance
• 1st	plane	used	as	veto	
• Transverse	size	of	about	2	x	1	m2

Target trackers (TT)



μ	Identification
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• μ	come	from:
• τ ->	µ	decays
• νµ	CC	interactions

• µ	identification	at	1ry	vertex	 crucial	for	
bkg rejection

SIGNAL BACKGROUND

• Dipolar	magnetic	(1.52T)	spectrometer
• 12	iron	 layers/arm	(5cm	each)
• 11	RPC	layers/arm	(2cm	each)
• 6	Drift	Tube	Tracker	Planes

• Momentum	 resolution	better	than	25%
• Charge	measurement	efficiency	~	94%



Neutrino	Fluxes

• SHiP experimental	setup	ideally	suited	to	perform	studies	on	
neutrino	and	anti-neutrino	physics.

• High	charmed	hadrons	decay	rates	⇒ high	ordinary	neutrino	
fluxes

21

ν energy	spectra	@	beam	dump
Φ <E>	(GeV)

νμ 4.4x1018 1.4
νe 2.1x1017 3
ντ 3.3x1015 9

Anti-νμ 2.8x1018 1.5
Anti-νe 1.6x1017 4
Anti-ντ 3.3x1015 8

Rates	for	five	years	of	nominal	operation	
with	2	x	1020 protons	on	target



Neutrino	Fluxes

• SHiP	experimental	setup	ideally	suited	to	perform	studies	on	
tau	neutrino	and	anti-neutrino	physics.

• High	charmed	hadrons	decay	rates	⇒ high	ordinary	tau-
neutrino	fluxes

22
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Energy	spectra	of	DIS	CC	interacting	ν
Φ <E>	(GeV)

νμ 1.7x106 29
νe 2.5x105 46
ντ 7.6x103 59

Anti-νμ 6.7x105 28
Anti-νe 9.0x104 46
Anti-ντ 3.9x103 58

Rates	for	five	years	of	nominal	operation	
with	2	x	1020 protons	on	target



Physics	with	DIS
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• High	 rates	of	Deep	Inelastic	Scattering	interactions	from	all	three	neutrino	
flavours on	target	nucleons	expected.

• Structure	function	estimation

• From	ντ and	anti-ντ CC	interactions:
• First	evaluation	of	F4 and	F5 not	accessible	with	lighter	neutrinos

• From	νμ and	anti-νμ CC	interactions:
• Estimation	of	F3



Physics	with	DIS
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• High	 rates	of	Deep	Inelastic	Scattering	interactions	from	all	three	neutrino	
flavours on	target	nucleons	expected

• Charm	production	with	ν and	anti-ν
scattering

• Charmed	hadrons	produced	at	a	
level	of	a	few	%	in	ν𝜇 and	νe CC	
interactions

• s-quark	content	of	the	nucleon:	
both	ν and	anti-ν are	a	good	
probe	 in	interactions	where	a	
charmed	hadron	 is	produced

• νe physics
• Study	of	νe cross	section	at	high	

energies
• Possibility	 to	normalize	the	charm	

production	 at	the	beam	dump



Sensitivity	to	F4 and	F5
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Through	ντ and	anti-ντ identification:	unique	 capability	of	being	sensitive	to	F4 and	F5

Differences	larger	for	
lower	ν energies

F4 =	F5 =	0	hypothesis
Increases	ντ and	anti-ντ
cross-sections

r =	ratio	between	the	cross	section	in	the	two	
hypotheses

ντ DIS	Cross-section Anti-ντ DIS	Cross-section

SM
SM

F4 =	F5 =	0
F4 =	F5 =	0

E(anti-ντ)	<	38	GeV
(~300	evts)

E(ντ +	anti-ντ)	<	20	GeV
(~420	evts)

r	>	1.6
evidence	for	a	non-zero	

value	of	F4 and	F5



Sensitivity	to	s-quark
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• Charmed	hadrons	 identified	 through	 the	observation	of	their	decay.

• Charmed	hadron	production	 in	
antineutrino	 interactions	selects	anti-
strange	quark	in	the	nucleon

• Improvement	achieved	on	s+/s-
versus	x

• Significant	gain	with	SHiP	data	
obtained	 in	the	x	range	between	0.03	
and	0.35	complementary	to	that	of	
ATLAS	and	CMS	(sensitive	at	lower	x)

f(charm) =

R
�⌫µ�

CC
⌫µ

⇣
�charm
�CC
⌫µ

⌘
dE

R
�⌫µ�

CC
⌫µ

dE
⇡ 4%

f(charm) =

R
�⌫e�

CC
⌫e

⇣
�charm
�CC
⌫e

⌘
dE

R
�⌫e�

CC
⌫e

dE
⇡ 6%

• Expected	ν-induced	charm	yield	in	5	years	run:

s+=s(x)+s-bar(x)



CONCLUSIONS

An
na

rit
a	
Bu

on
au

ra
,	o
n	b

eh
al
f	o

f	t
he
	S
Hi
P	
co
lla
bo
ra
tio

n	
-D

IS
20
16

27

• Unlike	LHC	exploring	 the	energy	 frontier,	SHiP	intends	 to	explore	the	intensity	
frontier

• Long-lived	and	very	weakly	interacting	particles	are	searched	for
• Sterile	neutrinos	 (Heavy	Neutral	Leptons)
• Dark	photons
• Paraphoton
• SUSY:	Sgoldstino,	 Light	neutralino

• Compact	neutrino	 detector	to	perform	SM	physics	studies
• Cross-section	measurement	 for	ντ and	anti-ντ interactions
• Estimate	structure	functions	 (F4 and	F5)	from	charged	current	neutrino	

nucleon	deep-inelastic	scattering
• Study	ν-induced	charm	events
• Study	s-quark	content	of	the	nucleon

• Technical	and	Physics	proposal	 submitted	 to	the	SPSC	in	April	2015	
• Positive	recommendation	 from	the	SPSC	in	January	2016



BACK-UP
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Time	scale
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• Form	SHiP	Collaboration
• Technical	Proposal	 submission
• Technical	Design	Report	submission
• Building	and	installation
• Commision
• Data	taking	and	analysis

December	2014	✓
April	2015	✓
2018
2018-2023
2023
2026



CERN	Accelerator	Complex
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Hidden	Particles	Background
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Expected	number	of	background	 events	from	MC	simulation	 for	5	years	of	data	taking.

ratio	between	the	equivalent	MC	statistics	and	the	total	
expected	number	 of	events

0	bkg events	observed	 in	the	MC

• no	evidence	of	significant	 impact	of	any	of	these	backgrounds	on	 the	experiment
• any	evidence	for	any	source	of	irreducible	background

Assumed	a	level	of	background	of	0.1	events	
for	the	entire	run	of	the	experiment

3σ	evidence	if	2	events	of	HNL	
are	observed



Muon background	
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Active	Muon-Shield
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• Muon flux	driven	by	the	HS	background	 and	
emulsion-based	neutrino	 detector

• Active	muon shield	based	entirely	on	magnet	
sweeper	with	a	total	field	integral	B	=	86.4	Tm

• Realistic	design	of	sweeper	magnets	in	progress
• Challenges:	flux	leakage,	constant	field	profile,	

modeling	magnet	shape
• Rate	reduction:	 from	1010	to	104	muons/spill
• Negligible	 flux	in	terms	of	detector	occupancy



Decay	volume	and	spectrometer
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Estimated need for vacuum: ~10-3mbar

VacuumVessel
• 10 m x 5 m x 60 m
• Walls thickness: 8 mm (Al) / 30 mm (SS)
• Walls separation: 300 mm
• Liquid scintillator (LS)

volume (~360 m3) readout
by WLS optical modules
(WOM) and PMTs

• Vessel weight ~ 480 t



Timing	detector
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Multi-gap	resistive	plate	chambers	(MRPC)
• ALICE	ToF and	EEE	project
• 61	chambers	x	120	cm	strips,	3	cm	pitch
• 50	ps resolution	achievable

Challenges: • large area
• required resolution <	100	ps

2	options	considered

Scintillator	bars
• NA61/SHINE	ToF
• 100	ps resolution
• size	of	scint.	counter	120	x	10	x	2.5	cm3

• total active area 1.2	x	7.2	m2



Calorimeters
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ECAL
‣ Almost elliptical shape (5 m x 10 m)
‣ 2876 Shashlik modules
‣ 2x2 cells/modules, width=6 cm
‣ 11504 independent readout channels

HCAL
‣ Matched with ECAL acceptance
‣ 2 stations
‣ 5 m x 10 m
‣ 1512 modules
‣ 24x24 cm2 dimensions
‣ Stratigraphy: N x (1.5 cm steel+0.5 cm scint)
‣ 1512 independent readout channels



Muon System
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Based on scintillating bars, with WLS fibers and SiPM readout

Requirements:
1) High-efficiency identification of muons in
the final state
2) Separation between muons and hadrons/
electrons
3) Complement timing detector to reject
combinatorial muon background

Technical	Proposal	 (preliminary	 design)
- 4	active	stations
- transverse	dimensions:	 1200x600	cm2
- x,y view
- 3380	bars,	5x300x2	cm3/each
- 7760	FEE	channels
- 1000	tons	of	iron	filters



Neutrino	fluxes
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SHiP	experimental	setup	ideally	suited	to	perform	studies	on	neutrino	 and	anti-
neutrino	 physics.
High	charmed	hadrons	decay	rates	⇒ high	 	ordinary	neutrino	 fluxes

Rates	for	five	years	of	nominal	operation	with	2	x	1020 protons	on	 target



Target	magnetization
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GOLIATH	MAGNET	
CERN	H4	beam	line	inside	2389	PPE	134	zone • 1	Tesla	vertical	magnetic	field	

• few	m3 volume	with	constant	
magnetization

Magnetic	field	behavior	 in	the	target	region

• Within	the	blue	curves	B	≈	1.5	T
• Within	the	red	curves	B	>=1	T



Track	reconstruction	in	Emulsion	Films
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European Scanning	System	ESS

• Nuclear	emulsions	consist	of	AgBr crystals	scattered	in	a	gelatin	binder.	
• Passage	of	charged	particles	sensitises AgBr crystals	along	the	path.
• Sensitesed crystals	act	as	latent	image	centers.	
• With	development	 there	is	the	growth	of	silver	clusters	=>	visible	to	optical	

microscope



Measuring	Momentum	with	ECC
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• Total	length	of	a	brick	~	10	X0 (	X0 =	5.6	mm).
• Scattering	is	dominated	by	the	lead
• Momentum	measurement	by	MCS	can	be	carried	out	in	2	ways:

• track	position	 (coordinate	method)
• track	angle	(angular	method) Deviation	of	the	trajectory	from	a	straight	line

Momenta	up	to	8	GeV/c	can	be	
measured	with	a	resolution	better	
than	30%



Electron/pion	identification
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• The	high	granularity	of	the	emulsions	
allows	excellent	e.m.	shower	identification.

• The	separation	of	electrons	and	pions
obtained	by	exploiting	different	behavior	in	
passing	through	 and	interacting	in	an	ECC.

• 2	complementary	approaches:	
• study	total	number	of	tracks	and	

different	 longitudinal	 and	transverse	
profiles

• study	of	Multiple	Coulomb	Scattering	
longitudinal	 profiles	

• going	 through	 a	material,	the	
energy	remains	almost	constant	
for	pions while	strongly	decreases	
for	electrons

π	contamination

e- efficiency



Detector	performances
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μ	identification

• Requirements:
1. track	crossing	3	RPC	layers	in	the	ARM1	of	the	Magnetic	Spectrometer
2. track	crossing	 the	Goliath	 Iron	and	reaching	at	least	the	first	HPT	plane

• The	usage	of	the	HPT	plane	for	the	muon identification	in	case	2.	increases	the	
muon identification	efficiency	of	about	2%	

• Muon identification	efficiency	of	about	90%	for	both		charm	events	(and	for	the	
muonic decay	channel	of	the	τ lepton)

Charge	measurement
• Charge	of	the	hadrons	 is	measured	by	the	Compact	Emulsion	Spectrometer	(CES)	
• Charge	of	the	muons by	the	magnetic	spectrometer	and	the	CES

Correct	assignment	efficiencies

Charge	Misidentification	probabilities



Costs
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