

WG6 – Spin Physics Summary Talk

WG6 Conveners: Salvatore Fazio (BNL) Emanuele R. Nocera (Oxford) Silvia Pisano (LNF-INFN) Erin Seder (CEA-Saclay)

Thanks to all speakers!

TMDs & FFs

Piet Mulders Mariaelena Bolgione Osvaldo Gonzalez Hernandez Wim Cosyn Erin Seder Kiyoshi Tanida Christopher Dilks Salvatore Fazio Harut Avagyan Charlotte Van Hulse Andrea Bressan Marcia Quaresma Adam Szabelski

Twist 3

Shinsuke Yoshida Yuji Koike Kenta Yabe

Longitudinal

Nobuo Sato Claudia Uebler Malte Wilfert Ana Sofia Nunes Ralf Seidl Suvarna Ramachandran Bernd Surrow

GPDs

Dieter Muller Gary Goldstein Renaud Boussarie Christian Wiese Silvia Niccolai Kyungseon Joo Philipp Jorg Sergey Manaenkov

34+4 talks

Future experiments (WG6/WG7 joint session) Jean-Philippe Lansberg Elke Aschenauer Rolf Ent Tianbo Liu

Apologies where we omitted your favourite topic

A (multi-D) QCD picture of the proton

A (multi-dimensional) mapping of the nucleon structure in terms of its elementary degrees of freedom (quarks and gluons) which combines spin with QCD dynamics **How is the nucleon spin carried by quark and gluon spins and orbital momenta?**

$$rac{1}{2}=rac{1}{2}\Delta\Sigma(\mu^2)+\Delta G(\mu^2)+\mathcal{L}_q(\mu^2)+\mathcal{L}_g(\mu^2)$$

What is the role of spin in QCD?

Inclusive DIS

[P. Nadolsky and R. Seidl, plenary]

Inclusive DIS

[M. Wilfert and A.S. Nunes]

- Final results on A_1 and g_1 on deuteron from the 2002-2006 COMPASS run (~2 times more data with a precision improvement w.r.t. 2002 data only)
- Results for A₁ and g₁ on proton at low Q and low x in two-dimensional bins (transition from the photoproduction regime to the pQCD regime) (evidence of positive spin effects at very low x, no dipendence on kinematics)

Polarized PDFs from DIS

[N. Sato]

moment	truncated	full
Δu^+	0.82 ± 0.01	0.83 ± 0.01
Δd^+	-0.42 ± 0.01	-0.44 ± 0.01
Δs^+	-0.10 ± 0.01	-0.10 ± 0.01
$\Delta\Sigma$	0.31 ± 0.03	0.28 ± 0.04
ΔG	0.5 ± 0.4	1 ± 15
d_2^p	0.005 ± 0.002	0.005 ± 0.002
d_2^n	-0.001 ± 0.001	-0.001 ± 0.001
h_p	-0.000 ± 0.001	0.000 ± 0.001
h_n	0.001 ± 0.002	0.001 ± 0.003

- Non-zero twist 3 quark distribution
- $_{\circ}$ Twist-4 contribution to g_1 consistent with zero
- Negative total strangeness
- Large uncertainties on the gluon

Proton spin from the lattice

[C. Wiese]

High- p_T hadroproduction

[C. Uebler]

High p_T hadron production (sensitive to the gluon polarization) Resummation of log threshold corrections by soft/collinear gluon emission at NLL

- Predictions for A_{LL} decrease when resummations effects are taken into account
- Discrepancy between data and theoretical predictions (theory predict a large ALL for protons than for deuterons, in contrast to the data)

Gluon helicity at RHIC

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \rightarrow \pi + X$	$\vec{g}\vec{g} \rightarrow gg$	Δg	39.000 K
	$ec{q}ec{g} o qg$		<u>~</u> ~
$\vec{p}\vec{p} \rightarrow \text{jet}(\mathbf{s}) + X$	$egin{array}{ccc} ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg \end{array} \ ec{q}ec{g} ightarrow qg \end{array}$	Δg	(as above)
$\begin{array}{l} \vec{p} \vec{p} \rightarrow \gamma + X \\ \vec{p} \vec{p} \rightarrow \gamma + \mathrm{jet} + X \end{array}$	$\begin{array}{ccc} q \overline{g} & \to & \gamma q \\ q \overline{g} & \to & \gamma q \end{array}$	$\frac{\Delta g}{\Delta g}$	<u>ب</u> ر
$p\overline{p} \rightarrow \gamma\gamma + X$	$ar q ar q \to \gamma \gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \rightarrow DX, BX$	$ec{g}ec{g} ightarrow car{c}$, $bar{b}$	Δg	کسو

PHENIX PRD 93 (2016) 011501

Inclusive jets and pions (new) [R. Seidl]

First nonzero pion double spin asymmetries confirm a sizeable positive gluon spin contribution Sensitivity extended at 510 GeV down to ~ 0.01

Gluon helicity at RHIC

J/Psi and dijets [R. Seidl and S. Ramachandran]

- Forward J/Psi asymmetry down to $x \sim 0.001$ with a slightly positive asymmetry (potential strong impact if production mechanism known)
- First dijet measurements at 510 GeV complete the measurement at 200 GeV (will extend the knowledge of the gluon helicity below x~0.05) (in 2013 STAR collected ~3 times more data at 510 GeV)

Sea quarks at RHIC

[B. Surrow]

Forward rapidity (STAR) and mid-rapidity (new, PHENIX) results (run 11/12) (results suggest a sizable anti-u quark polarization along with broken polarized sea)

From 1D to 3D

- how charges are distributed inside the nucleon
- macroscopic nucleon properties in terms of elementary degrees of freedom

From 1D to 3D

- how charges are distributed inside the nucleon
- macroscopic nucleon properties in terms of elementary degrees of freedom

Lorcé et al., JHEP05 (2011) 041

3D nucleon mapping in the momentum space

Tranverse Momentum Dependent distributions map the nucleon in the momentum space

Accessed through Semi-Inclusive DIS

3D nucleon mapping in the momentum space

Gauge links and process dependence

Non perturbative bound states implemented through correlators. Gauge links accounts for non locality & color gauge invariance

$$\Phi_{ij}(x, p_T; n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{ip \cdot \xi} \langle P, S | \overline{\psi}_j(0) \,\psi_i(\xi) | P, S \rangle \left|_{\xi \cdot n = 0} \right.$$

[P. Mulders]

 \Rightarrow Gauge links are process dependent, **universality is lost**

$$\Phi_{ij}^{q[C]}(x, p_T; n) = \int \frac{d(\xi, P) d^2 \xi_T}{(2\pi)^3} e^{ip.\xi} \left\langle P \Big| \overline{\psi}_j(0) U_{[0,\xi]}^{[C]} \psi_i(\xi) \Big| P \right\rangle_{\xi,n=0}$$
path dependent gauge link
WG6 – Spin Physics Summary Talk

Testing QCD: Sivers sign change

[S. Fazio, E. Aschenauer]

Fundamental prediction from the **Gauge Invariance** of QCD

Sivers (DIS) = - Sivers (DY or W or Z)

Test through Drell-Yan process: COMPASS (CERN), SeaQuest (proposed at FermiLab)

- strong background suppression, high luminosity
- o @STAR in 2017

Polarized weak boson production

- very low background
- Very-high Q^2 scale (W/Z mass)

Sivers sign change@STAR

If there are not evolution effect, data favor Sivers change of sign hypothesis

Same test done by including the largest predicted evolution effect

[S. Fazio , E. Aschenauer]

No TMD evolution effects included

- solid line: assumption of a sign change $\rightarrow \chi^2(/dof)$ = 7.4/6
- dashed line: assumption of Ο <u>no sign change</u> $\rightarrow \chi^2(/dof)$ = 19.6/6

PRL 116 132301 (2016) editor's suggestion

 $25pb^{-1}$ pilot sample \rightarrow proof of principle New Run 17 next year: integrated delivered luminosity of $400pb^{-1}$

WG6 – Spin Physics Summary Talk

0.5

vw

Hadronization & fragmentation [M. E. Boglione]

Calculating a cross section which describes a hadronic process over the whole q_T range is a highly non-trivial task

Fixed-order pQCD fails to describe SIDIS data at low q_T

Cross-section tail at large q_T clearly not-Gaussian

Hadronization & fragmentation [E. Seder]

Hadronization & fragmentation [T. Liu, R. Ent] Q², GeV² SBS+BB SOLID forward SOLID large-angle New Hall pgrade arc magnets and supplies Add 5 cryomodule S CHL 20 cryomodule upgrad 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 Add arc 20 cryomodules Add 5 cryomodule significant extension of fragmentation S (pions, kaons) to the valence region with the 12 GeV upgrade of Jefferson Enhanced capabilities in existing Halls

Accessing fragmentation functions [C. Van Hulse]

cleanest access to FF through e^+e^- collisions

Universality of FF: used in nucleon structure analysis in SIDIS processes

global analysis needed to access flavor discrimination $\Rightarrow pp$, SIDIS data

Accessing fragmentation functions [C. Van Hulse]

Universality of FF: used in nucleon structure analysis in SIDIS processes

global analysis needed to access flavor discrimination $\Rightarrow pp$, SIDIS data

Accessing fragmentation functions

Collins extraction from e^+e^- data 0.4 0.2 Q2=2.4 GeV2 $z \Delta^{N} D_{u/n}^{+}(z)$ 0.2 Δ_T u 0.1 0 0 z Δ^N D_{u/n}-(z) -0.1 0 ΔT d -0.2 -0.2 -0.3 2013 2013 2015 2015 -0.4 -0.4 0.001 0.01 0.1 0.2 0.4 0.6 0.8 X Z

Universality of FF: used in nucleon structure analysis in SIDIS processes

global analysis needed to access flavor discrimination $\Rightarrow pp$, SIDIS data

WG6 – Spin Physics Summary Talk

[O. G. Hernandez]

Sivers through SIDIS – COMPASS & HERMES

COMPASS SIDIS proton data from 2007 and 2010 (*PLB 744 (2015) 250*)

[A. Bressan, C. Van Hulse]

possible evolution effects can be present while analyzing data from different Q^2

 \Rightarrow important to cover an extended Q^2 region

Sivers through SIDIS – SoLID & Hall-B@JLab

parametrization by M. Anselmino et al., EPJ A 39, 89 (2009).

[T. Liu, R. Ent]

SoLID projection with transversely polarized neutron and proton data.

h

Correlated quark pairs in the nucleon

Correlated quark pairs in the nucleon

Generalized Parton Distributions

[G. Goldstein, D. Mueller]

 $GPDs \Rightarrow (2 + 1)D$ description of the nucleon

Relate parton tranverse position to its momentum fraction (combining 1D PDF to electromagnetic form factors)

Generalized Parton Distributions

[G. Goldstein, D. Mueller]

Accessed through Deeply-Virtual Compton Scattering

Single/double spin asymmetries give access to different GPDs

Different GPDs correspond to specific polarization degrees of freedom (different charges)

Nucleon transverse size – GPD's – t dependence

The distance $\langle r_{\perp}^2 \rangle$ between the struck quark and the spectator c.m. is given by the *t*-slope of the DVCS cross-section.

Extracting it for different x_B values provides a tomographic picture of the nucleon, *i.e.* how its shape changes with x_B

[P. Jörg]

$$B(x_B) = B_0 + 2\alpha' log\left(\frac{x_0}{x_B}\right)$$

 10^{2}

Nucleon transverse size – GPD's – t dependence

[P. Jörg]

The distance $\langle r_{\perp}^2 \rangle$ between the struck quark and the spectator c.m. is given by the *t*-slope of the DVCS cross-section.

Extracting it for different x_B values provides a tomographic picture of the nucleon, *i.e.* how its shape changes with x_B

combining HERA data with the expected ones from COMPASS, JLab12 will allow to cover a wide region **from sea to valence**

Charges in the nucleon

[S. Niccolai, K. Joo]

Beyond leading twist

[C. Dilks, C. Van Hulse]

Twist-3 asymmetries already observed in some experiments

Single-spin asymmetries can also be generated in a fully collinear framework using higher-twist functions

[Y. Koike, S. Yoshida,

K. Yabe]

Collins, Sivers, Twist-3 suggest $1/p_T$ Flat dependence observed

Beyond leading twist

[C. Dilks, C. Van Hulse]

Twist-3 asymmetries already observed in some experiments

Single-spin asymmetries can also be generated in a fully collinear framework using higher-twist functions

[Y. Koike, S. Yoshida, K. Yabe]

Collins, Sivers, Twist-3 suggest $1/p_T$ Flat dependence observed

A path toward a 5D mapping

We are looking for suitable processes to go beyond the 3D description

Multi-particle final states

Large acceptance detectors, high statistics

R. Ent,

Conclusions

To understand hadronic bound states we need to look in the nonperturbative mess inside the proton

"I'm searching for my keys."

credits to H. Avakian for this parable

backup

TMD regions

DVCS@Hall-B, JLab

Sivers through SIDIS – COMPASS & HERMES

- Also gluon Sivers is being test
 @COMPASS, both on proton and deuteron
- two different mechanisms exploited: J/ψ production & high- p_T hadron pair production

DVCS cross-section: -*t* dependence

Model independent result

DVCS cross-section: -*t* dependence

DVCS jlab – cross-section

- VGG model
- $\circ ~Ae^{bt}$

A, b increases with x_B

 \rightarrow the partonic content of the nucleon increases when probing smaller x_B

