

Institut für Kern- und Teilchenphysik, Professur für experimentelle Teilchenphysik

Measurement of WW and WZ production cross section at 8 TeV and limits on anomalous triple gauge couplings with the ATLAS detector

Felix Socher on behalf of the ATLAS collaboration

Hamburg, 12.04.2016

- test of the electroweak gauge sector
- test of perturbative QCD
- search for new physics via anomalous triple gauge couplings
- background for e.g. $H \rightarrow WW$

Introduction - ATLAS

	inclusive xsec	diff. cross sections	used variable for aTGCs
WZ → IIIv @ 8 TeV arxiv:1603.02151v1 submitted to PRD	yes	$p_{\mathrm{T}}^{\mathrm{Z}}, p_{\mathrm{T}}^{\mathrm{W}}, M_{\mathrm{T}}^{\mathrm{WZ}}, p_{\mathrm{T}}^{\nu}, y_{\mathrm{Z}} - y_{\mathrm{W}} , N_{\mathrm{Jets}}, m_{\mathrm{jj}}$	$M_{\mathrm{T}}^{\mathrm{WZ}}$
WW → lvlv @ 8 TeV arxiv:1603.01702v1 submitted to JHEP	yes	$p_{\mathrm{T}}^{\mathrm{lead}}, p_{\mathrm{T},\mathrm{ll}}, m_{\mathrm{ll}}, \ \Delta \Phi_{\mathrm{ll}}, y_{\mathrm{ll}} , \cos(heta^*) $	$p_{\mathrm{T}}^{\mathrm{lead}}$
<i>WW+WZ → lvjj @</i> 7 TeV <u>JHEP01(2015)049</u>	yes	-	$p_{\mathrm{T}}^{\mathrm{jj}}$

- fully leptonic final states offer clean signatures but have low statistics
- final states with jets have higher statistics \rightarrow complementary
- of course always stay tuned for new results

Introduction - Standard Model Overview

		·····	······································		$[fb^{-1}]$	Reference
рр	$\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb (data)} \\ \text{COMPETE RRpl2u 2002 (theory)}$		•	•	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014)
	$\sigma = 94.51 \pm 0.194 \pm 3.726$ nb (data) FEWZ+HERAPDF1.5 NNLO (theory)		\$	0	0.035	PRD 85, 072004 (2012)
VV	$\sigma = 179194.0 \pm 212.0 \pm 17594.0 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{FEWZ} + \mathrm{CT10NNLO} \ \mathrm{(theory)}$		ģ	d d	0.085	ATLAS-CONF-2015-039
7	$\sigma = 27.94 \pm 0.178 \pm 1.096 \text{ nb} \text{ (data)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)}$		¢	0	0.035	PRD 85, 072004 (2012)
Z	$\sigma = 55532.0 \pm 199.0 \pm 5152.0 \text{ pb (data)} \\ \text{FEWZ} + \text{CT10NNLO (theory)}$		¢	4	0.085	ATLAS-CONF-2015-039
. –	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data), top++ NNLO+NNLL (theory)}$	¢,		0	4.6	Eur. Phys. J. C 74: 3109 (2014
tt	$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb (data), top++ NNLO+NNLL (theory)}$ $\sigma = 829.0 \pm 50.0 \pm 100.0 \text{ pb (data), top++ NNLO+NLL (theory)}$	4 		Δ	20.3	Eur. Phys. J. C 74: 3109 (2014 ATLAS-CONE-2015-049
	$\sigma = 68.0 \pm 2.0 \pm 8.0 \text{ pb (data)}$ NLO+NLL (theory)	¢			4.6	PRD 90, 112006 (2014)
-chan	$\sigma = 82.6 \pm 1.2 \pm 12.0 \text{ pb (data)} \\ \text{NLO+NLL (theory)}$	4		4	20.3	ATLAS-CONF-2014-007
	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$ MCFM (theory)	\$		0	4.6	PRD 87, 112001 (2013)
/VVV	$\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{MCFM} \ \mathrm{(theory)}$	4	Theory	Δ.	20.3	ATLAS-CONF-2014-033
	$\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7 \text{ pb (data)}$ LHC-HXSWG (theory)		LHC pp $\sqrt{s} = 7$ TeV		4.5	arXiv:1507.04548 [hep-ex]
н	$\sigma = 27.7 \pm 3.0 + 2.3 - 1.9 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{LHC}\text{-HXSWG} \ \mathrm{(theory)}$	_	Data		20.3	arXiv:1507.04548 [hep-ex]
	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb (data)} \\ \text{NLO+NLL (theory)}$	0	stat stat+syst		2.0	PLB 716, 142-159 (2012)
VVt	$\sigma = 23.0 \pm 1.3 + 3.4 - 3.7 \text{ pb} \text{ (data)} \\ \text{NLO+NLL (theory)}$	_	LHC pp $\sqrt{s} = 8$ TeV		20.3	arXiv:1510.03752 [hep-ex]
A/7	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)}$ MCFM (theory)	\$	Data		4.6	EPJC 72, 2173 (2012)
VVZ	$\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \ {\rm pb} \ {\rm (data)} \\ {\rm MCFM} \ {\rm (theory)}$	4	stat stat+syst	4	13.0	ATLAS-CONF-2013-021
	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)}$				4.6	JHEP 03, 128 (2013)
ZZ	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)} \\ \text{MCFM (theory)} $		LHC pp $\sqrt{s} = 13$ lev	4	20.3	ATLAS-CONF-2013-020
s–chan	$\sigma = 4.8 \pm 1.1 + 2.2 - 2.0 \text{ pb (data)}$ NLO+NNL (theory)		stat stat		20.3	ATLAS-CONF-2015-047
ŧ Ŧ W	σ = 369.0 + 86.0 - 79.0 ± 44.0 fb (data) MCFM (theory)	ATLAS	Preliminary		20.3	arXiv:1509.05276 [hep-ex]
tīZ	$\sigma = 176.0 + 52.0 - 48.0 \pm 24.0$ fb (data) HELAC-NLO (theory)	Run 1,2	$\sqrt{s} = 7, 8, 13 \text{ TeV}$		20.3	arXiv:1509.05276 [hep-ex]
	$10^{-5} 10^{-4} 10^{-5} 10^{-2} 10^{-1} 1 10^{-1}$	1^{1} 10^{2} 10^{3}	10^{4} 10^{5} 10^{6} 10^{11}	0.5 1 1.5 2		

$WW \rightarrow IvIv @ 8 \text{ TeV}$

arxiv:1603.01702v1

l	еμ	ee/µµ	10^9 ATLAS \rightarrow Data 10^8 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Data
$p_{\rm T}^{t}$ (leading/sub-leading)	> 25	5 / 20 GeV	ϕ
$ \eta^\ell $	$ \eta^{\mu} < 2.4$	and $ \eta^e < 2.47$,	C IU other diboson MC
	excluding 1	$1.37 < \eta^e < 1.52$	
Number of additional leptons with			10 ⁵
$p_{\rm T} > 7 { m ~GeV}$	0	0	10 ⁴
$m_{\ell\ell}$	> 10 GeV	> 15 GeV	
$ m_Z - m_{\ell\ell} $		> 15 GeV	10 ²
$E_{\rm T, \ Rel}^{\rm miss}$	> 15 GeV	> 45 GeV	10
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 20 GeV	> 45 GeV	50 100 150 200 250 m [C
$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss})$	< 0.6	< 0.3	
Number of jets with			
$p_{\rm T} > 25 \text{ GeV}, \eta < 4.5$	0	0	$ \overset{\checkmark}{\square} = \frac{1}{2500} \begin{bmatrix} \sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1} \\ e^{\frac{1}{2}} \sqrt{e^{\frac{1}{2}}} + u^{\frac{1}{2}} \sqrt{u^{\frac{1}{2}}} \sqrt{chappels} \end{bmatrix} \xrightarrow{\text{Top Quark MC}} \text{ww MC} $

- highlighting shows mainly affected background
- large backgrounds but well suppressible
- jet veto introduces new theoretical complications

Jet multiplicity

	еμ	ee	μμ
Data	5067	594	820
tot exp.	4420 ± 320	507 ± 40	820 ± 65
WW signal	3240 ± 280	346 ± 33	613 ± 60
tot bkg.	1180 ± 150	161 ± 23	205 ± 26

$$\sigma_{\rm fid}^{\ell\ell'}(WW) = \frac{N_{\rm data} - N_{\rm bkg}}{C_{WW} \times \mathcal{L}}$$

efficiency corrects for detector effects

$$\sigma_{\text{tot}}(pp \to WW) = \frac{\sigma_{\text{fid}}^{\ell\ell'}(pp \to WW)}{A_{WW} \times \mathcal{B}^2(W \to \ell\nu)}$$
extrapolation to total phase space determined via MC

(qq/gg/H) → WW (MC) **Top Quark** (shape from MC, normalisation from data via control region)

W+Jets (completely data driven, also contains multi jet contribution)

Drell-Yan (shape from MC, normalisation from data via control region)

Diboson (taken from MC)

 driving uncertainties: jet measurement, luminosity, pileup, W+jets/multijet bkg, and top bkg

- slight discrepancy between data and theory seen at NNLO
- caused by theoretical complications due to jet veto

WW - Discussion on Cross Section Results

- total phase space predictions rising with higher order
- theory uncertainties not covering higher orders
- extrapolation from fiducial to total phase space done with PowHeg (NLO MC) -> discussed in arXiv:1410.4745
- two effects:
 - veto efficiency overestimated by PowHeg (~ -7-8%)
 - treatment of the hardest emission (~ -3%)

higher extrapolation factor obtained at NLO leads to higher measured cross section

- only measured in the eµ channel (cleaner, more statistics)
- unfolding done via Bayesian Iterative unfolding (3 iterations)
- shapes seem to be described relatively well
- prediction normalised to NNLO but using NLO extrapolation

$WZ \rightarrow IIIv @ 8 \text{ TeV}$

arxiv:1603.02151v1

Variable	Requirement
$egin{array}{ll} p_{ ext{T}}^{l_Z}, \ p_{ ext{T}}^{l_W} \ \eta^l \end{array}$	$\begin{vmatrix} > 15 \text{ GeV}, > 20 \text{ GeV} \\ \mu :< 2.4, e :< 2.47 \end{vmatrix}$
Number of leptons with $p_{\rm T} > 15 \text{ GeV}$	= 3
Number of additional leptons with $p_{\rm T} > 7 \text{ GeV}$	0
$ m_{ m Z}-m_{ m Z}^{ m PDG} $	< 10 GeV
$m_{ m T}^{ m W}$	> 30 GeV

- assignment of leptons via finding the best Z candidate
- tight requirements on lepton associated with W to suppress Z+jets
- WZ scaled to data in plots for illustration purposes

WZ - Yields and Cross Section Results

	eee	μее	еµµ	μμμ
Data	406	483	539	663
tot exp.	337 ± 2	411 ± 2	469 ± 2	608 ± 4
WZ signal	256 ± 1	337 ± 1	367 ± 1	496 ± 2
tot bkg.	81 ± 2	74 ± 2	102 ± 2	112 ± 3

Main uncertainties: lepton identification, luminosity, misid. leptons background

NNLO results will be available soon and may remedy this

misid. Leptons (completely data driven, estimates simultaneously top and W/Z+Jets contributions)
ZZ (shape from MC, normalisation from data)
Top+V (taken from MC)
tZ (taken from MC)

others (multiple parton scattering and VVV taken from MC)

- measured across all channels
- unfolding done via Bayesian Iterative unfolding (3 iterations)
- shapes seem to be described relatively well
- factor of 1.17 on PowHeg prediction has been removed on the right

aTGCs

- aTGCs offer a general approach to new physics
- new operators affecting triple gauge vertices added
- coupling strengths of operators model new physics effects
- several parameterisations possible
- here only CP conserving operators considered

$$\mathcal{L} = ig_{WWV} \left[g_1^V (W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^-) V^\nu + k^V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda^V}{m_W^2} W_{\mu}^{+\nu} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right]$$

Effective Field Theory:

$$WWW = \frac{c_{WWW}}{\Lambda^2} \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$O_W = \frac{c_W}{\Lambda^2} \left(D_{\mu}\Phi\right)^{\dagger} W^{\mu\nu} \left(D_{\nu}\Phi\right)$$
$$O_B = \frac{c_B}{\Lambda^2} \left(D_{\mu}\Phi\right) B^{\mu\nu} \left(D_{\nu}\Phi\right)$$

• conversions between parameterisations exist, e.g. LEP Scenario:

0

$$\frac{c_W}{\Lambda^2} = \frac{2}{m_Z^2} \Delta g_1^Z \qquad \qquad \frac{c_B}{\Lambda^2} = \frac{2}{m_W^2} \Delta \kappa_\gamma - \frac{2}{m_Z^2} \Delta g_1^Z \qquad \qquad \frac{c_{WWW}}{\Lambda^2} = \frac{2}{3g^2 m_W^2} \lambda \delta g_1^Z \qquad \qquad \frac{c_WWW}{\Lambda^2} = \frac{2}{3g^2 m_W^2} \lambda \delta g_1^Z \qquad \qquad \frac{c_WWW}{\Lambda^2} = \frac{2}{3g^2 m_W^2} \delta g_1^Z \qquad \qquad \frac{c_WW}$$

aTGCs - Discriminating Variables

- restricted by fit on sensitive variables
- theory corrections (EW, QCD) applied
- binning optimised towards sensitivity

aTGC Limits	Cwww	/Λ² [TeV⁻²]	C_B/Λ^2 [TeV ⁻²]		C_w/Λ^2 [TeV ⁻²]	
$WZ \rightarrow IIIv @ 8 TeV$ arxiv:1603.02151v1 submitted to PRD	exp: obs:	[-3.9, 3.8] [-3.9, 4.0]	exp: obs:	[-270, 180] [-320, 210]	exp: obs:	[-3.7, 7.6] [-4.3, 6.8]
$WW \rightarrow IvIv @ 8 \text{ TeV}$ arxiv:1603.01702v1 submitted to JHEP	exp: obs:	[-7.6, 7.4] [-4.6, 4.6]	exp: obs:	[-35.8, 38.4] [-20.9, 26.3]	exp: obs:	[-12,6, 14.3] [-5.9, 10.5]
<i>WW+WZ → lvjj @</i> 7 TeV JHEP01(2015)049	exp: obs:	[-11.6, 11.5] [-9.5, 9.6]	exp: obs:	[-73, 39] [-64, 69]	exp: obs:	[-17,21] [-13, 18]

- comparison of EFT parameters
- WZ less sensitive to C_B

aTGCs - Results

$\Delta g_{1}^{Z} = \left(\begin{array}{c} ATLAS WZ & B TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & B TeV & 20.3 fb^{-1} & A = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WV & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WV & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WV & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ D combination & 1.96 TeV & 8.6 fb^{-1} & A = \infty \\ D combination & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 7 TeV & 5.0 fb^{-1} & A = \infty \\ D combination & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{$						
$\Delta g_{1}^{Z} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			AT	LAS		
$\Delta g_{1}^{Z} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			ATLAS WZ	8 TeV	20.3 fb ⁻¹	$\Lambda = \infty$
$\Delta g_{1}^{Z} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	ATLAS WZ	8 TeV	20.3 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
Δg_{1}^{2} $\lambda \kappa^{Z}$ $ATLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WW 8 TeV 20.3 fb^{-1} A = \infty MTLAS WW 8 TeV 20.3 fb^{-1} A = \infty MTLAS WW 8 TeV 19.4 fb^{-1} A = \infty MTLAS WW 8 TeV 19.4 fb^{-1} A = \infty MTLAS WW 8 TeV 19.4 fb^{-1} A = \infty MTLAS WZ 8 TeV 20.3 fb^{-1} A = \infty MTLAS WZ 8 TeV 20.3 fb^{-1} A = \infty MTLAS WZ 8 TeV 20.3 fb^{-1} A = \infty MTLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WW 8 TeV 20.3 fb^{-1} A = \infty MTLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WZ 7 TeV 46 fb^{-1} A = 2 TeV ATLAS WW 7 TeV 50 fb^{-1} A = \infty MTLAS WW 7 TeV 50 fb^{-1} A = \infty MTLAS WW 7 TeV 50 fb^{-1} A = \infty MTLAS WW 7 TeV 50 fb^{-1} A = \infty MTLAS WW 7 TeV 50 fb^{-1} A = \infty MTLAS WW 7 TeV 50 fb^{-1} A = \infty MTLAS WZ 7 TeV 46 fb^{-1} A = \infty MTLAS WW 7 TEV 50 fb^{$	7		ATLAS WZ	7 TeV	4.6 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ D0 combination & 1.96 TeV & 8.6 fb^{-1} & A = 2 TeV \\ LEP combination & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = 2 TeV \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ D0 combination & 1.9 TeV & 8.6 fb^{-1} & A = 2 TeV \\ LEP combination & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} $	۸a		ATLAS WZ	7 TeV	4.6 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
$\Delta \kappa^{Z} - \frac{ATLAS WV}{CMS WW} = \frac{7 \text{ TeV}}{19.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = 2 \text{ TeV}}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{19.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{10.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{A = \infty}{A = 2 \text{ TeV}} + \frac{10.4 \text{ fb}^{-1}}{10.4 \text{ fb}^{-1}} + \frac{10.4 \text{ fb}^{-1$	Δy		ATLAS WW	8 TeV	20.3 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \begin{bmatrix} CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ D0 \text{ combination} & 1.96 \text{ TeV} & 8.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ D0 \text{ combination} & 1.9 \text{ TeV} & 8.6 \text{ fb}^{-1} & \Lambda = \infty \\ D0 \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ D0 \text{ combination} & 1.9 \text{ TeV} & 8.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1}$	I		ATLAS WV	7 TeV	5.0 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z}$		•	CMS WW	8 TeV	19.4 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z}$			D0 combination	1.96 TeV	8.6 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ D0 \text{ combination} & 1.9 TeV & 8.6 fb^{-1} & A = 2 TeV \\ LEP \text{ combination} & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ LEP \text{ combination} & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 f$		1	LEP combination	0.2 TeV	0.7 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$						_
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = 2 TeV \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ D0 combination & 1.9 TeV & 8.6 fb^{-1} & A = 2 TeV \\ LEP combination & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TEV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TEV & 5.0 fb^{-1} & A = \infty \\ CMS WV & TEV & CMS WV & TEV \\ CMS WV & $		Á.	ATLAS WZ	8 TeV	20.3 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		l III III III III III III III III III I	ATLAS WZ	8 TeV	20.3 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
$\Delta \kappa^{Z} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			ATLAS WZ	7 TeV	4.6 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z}$ ATLAS WW 8 TeV 20.3 fb ⁻¹ A = ∞ ATLAS WV 7 TeV 5.0 fb ⁻¹ A = ∞ CMS WW 8 TeV 19.4 fb ⁻¹ A = ∞ CMS WV 7 TeV 5.0 fb ⁻¹ A = ∞ D0 combination 1.9 TeV 8.6 fb ⁻¹ A = 2 TeV LEP combination 0.2 TeV 0.7 fb ⁻¹ A = ∞ ATLAS WZ 8 TeV 20.3 fb ⁻¹ A = ∞ ATLAS WZ 8 TeV 20.3 fb ⁻¹ A = ∞ ATLAS WZ 7 TeV 4.6 fb ⁻¹ A = ∞ ATLAS WZ 7 TeV 4.6 fb ⁻¹ A = ∞ ATLAS WW 8 TeV 20.3 fb ⁻¹ A = ∞ ATLAS WZ 7 TeV 4.6 fb ⁻¹ A = ∞ ATLAS WZ 7 TeV 4.6 fb ⁻¹ A = ∞ ATLAS WW 8 TeV 20.3 fb ⁻¹ A = ∞ ATLAS WW 8 TeV 20.3 fb ⁻¹ A = ∞ ATLAS WV 7 TeV 5.0 fb ⁻¹ A = ∞ ATLAS WV 7 TeV 5.0 fb ⁻¹ A = ∞ CMS WW 8 TeV 19.4 fb ⁻¹ A = ∞ CMS WV 7 TeV 5.0 fb ⁻¹ A = ∞ CMS WV 7 TeV 5.0 fb ⁻¹ A = ∞ CMS WV 7 TeV 5.0 fb ⁻¹ A = ∞ CMS WV 7 TeV 5.0 fb ⁻¹ A = ∞	7		ATLAS WZ	7 TeV	4.6 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ D0 combination & 1.9 TeV & 8.6 fb^{-1} & A = 2 TeV \\ LEP combination & 0.2 TeV & 0.7 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 20.3 fb^{-1} & A = \infty \\ CMS WW & 8 TeV & 19.4 fb^{-1} & A = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TEV & 5.0 fb^{-1} & A = \infty \\ CMS WV & 7 TEV & 5.0 fb^{-1} $	λ <u>ζ</u>		ATLAS WW	8 TeV	20.3 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \begin{bmatrix} CMS WW & 8 TeV & 19.4 fb^{-1} & \Lambda = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & \Lambda = \infty \\ D0 \ combination & 1.9 TeV & 8.6 fb^{-1} & \Lambda = 2 TeV \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 TeV & 20.3 fb^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & \Lambda = 2 TeV \\ ATLAS WZ & 7 TeV & 4.6 fb^{-1} & \Lambda = \infty \\ ATLAS WW & 8 TeV & 20.3 fb^{-1} & \Lambda = \infty \\ ATLAS WV & 7 TeV & 5.0 fb^{-1} & \Lambda = \infty \\ CMS WW & 8 TeV & 19.4 fb^{-1} & \Lambda = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & \Lambda = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ CMS WV & 7 TeV & 5.0 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV & 0.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} & \Lambda = \infty \\ LEP \ combination \ D.2 TeV \ D.7 fb^{-1} &$	\sim		ATLAS WV	7 TeV	5.0 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} - \frac{CMS WV}{D0 \ combination} + \frac{1.9 \ TeV}{LEP \ combination} + \frac{1.9 \ TeV}{0.7 \ tb^{-1}} + \frac{1.4 \ mm}{\Lambda} = \infty + \frac{1.9 \ TeV}{\Lambda} + 1.9 \ TeV$		1	CMS WW	8 TeV	19.4 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} \begin{bmatrix} D0 \text{ combination} & 1.9 \text{ TeV} & 8.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ & & & & \\ & & & & \\ & &$			CMS WV	7 TeV	5.0 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} \begin{bmatrix} LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 \ TeV & 20.3 \ fb^{-1} & \Lambda = 2 \ TeV \\ ATLAS WZ & 8 \ TeV & 20.3 \ fb^{-1} & \Lambda = 2 \ TeV \\ ATLAS WZ & 7 \ TeV & 4.6 \ fb^{-1} & \Lambda = 2 \ TeV \\ ATLAS WZ & 7 \ TeV & 4.6 \ fb^{-1} & \Lambda = 2 \ TeV \\ ATLAS WW & 8 \ TeV & 20.3 \ fb^{-1} & \Lambda = 2 \ TeV \\ ATLAS WW & 8 \ TeV & 20.3 \ fb^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \ TeV & 20.3 \ fb^{-1} & \Lambda = \infty \\ CMS WW & 8 \ TeV & 19.4 \ fb^{-1} & \Lambda = \infty \\ CMS WW & 8 \ TeV & 19.4 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ CMS WV & 7 \ TeV & 5.0 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ TeV & 0.7 \ fb^{-1} & \Lambda = \infty \\ LEP \ combination & 0.2 \ teV \ t$			D0 combination	1.9 TeV	8.6 fb	$\Lambda = 2 \text{ TeV}$
Δκ ^Z -0.5 0 0.5 1 1.5 2 2.5			LEP combination	0.2 TeV	0.7 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WV & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 \end{bmatrix}$		<u> </u>				_
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WZ & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WV & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 \end{bmatrix}$			ATLAS WZ	8 TeV	20.3 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WV & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 \end{bmatrix}$			ATLAS WZ	8 TeV	20.3 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
$\Delta \kappa^{Z} = \begin{bmatrix} ATLAS WZ & 7 \text{ TeV} & 4.6 \text{ fb}^{-1} & \Lambda = 2 \text{ TeV} \\ ATLAS WW & 8 \text{ TeV} & 20.3 \text{ fb}^{-1} & \Lambda = \infty \\ ATLAS WV & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WW & 8 \text{ TeV} & 19.4 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WV & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ CMS WV & 7 \text{ TeV} & 5.0 \text{ fb}^{-1} & \Lambda = \infty \\ LEP \text{ combination} & 0.2 \text{ TeV} & 0.7 \text{ fb}^{-1} & \Lambda = \infty \\ -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 \end{bmatrix}$			ATLAS WZ	7 TeV	4.6 fb ⁻¹	$\Lambda = \infty$
$\Delta \kappa^{2} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 7		ATLAS WZ	7 TeV	4.6 fb ⁻¹	$\Lambda = 2 \text{ TeV}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Λκ~		ATLAS WW	8 TeV	20.3 fb ⁻	$\Lambda = \infty$
-0.5 0 0.5 1 1.5 2 2.5			ATLAS WV	7 TeV	5.0 fb ⁻¹	$\Lambda = \infty$
-0.5 0 0.5 1 1.5 2 2.5			CMS WW	8 TeV	19.4 fb ⁻	$\Lambda = \infty$
-0.5 0 0.5 1 1.5 2 2.5			CMS WV	7 TeV	5.0 fb	$\Lambda = \infty$
-0.5 0 0.5 1 1.5 2 2.5			LEP combination	0.2 TeV	0.7 fb	$\Lambda = \infty$
-0.5 0 0.5 1 1.5 2 2.5						
-0.5 0 0.5 1 1.5 2 2.5						
	-	0.5 0 0.5	1 1	.5	2	2.5

- aTGC limits in the LEP scenario
- LHC limits on par with LEP results
- WZ less sensitive to $\Delta \kappa^Z$

- diboson measurements provide an important test of the electroweak gauge sector
- new physics can be probed via measuring aTGCs
- available results:
 - inclusive cross sections for WW and WZ @ 8 TeV and WW+WZ @ 7 TeV
 - differential distributions for WW and WZ @ 8 TeV
 - constraints on aTGCs for WW and WZ @ 8 TeV and WW+WZ @ 7 TeV
- predictions agree well with theory at NNLO, agreement likely get better with improved calculations
- new data will provide complementary results -> stay tuned!

Thank you for your attention!

 $WW \rightarrow lv/v \otimes 8 \text{ TeV}$

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2015-323 8th March 2016

Measurement of total and differential W^+W^- production cross sections in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings

The ATLAS Collaboration

Abstract

The production of *W* boson pairs in proton-proton collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to 20.3 fb⁻¹ of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The *W* bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 *WW* candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the *W* branching fractions to leptons in order to obtain the total *WW* production cross section, which is found to be 71.1±1.1(stat) $^{+5.0}_{-5.0}(syst) \pm 1.4(lumi)$ pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of $63.2^{+1.6}_{-1.4}(scale)\pm 1.2(PDF)$ pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.

- inclusive cross section measurement of WW prod.
- differential cross sections for selected variables
- limits on anomalous triple gauge couplings
- 20.3 ifb @ 8 TeV

WW - Yields and Cross Section Results

Final state	eµ	ı	ee	μμ			
Observed events	5067		594	975			
Total expected events (Signal + background)	4420 ± 30) ± 320	507 ± 9 ± 39	820 ± 10 ± 65			
WW signal (MC)	3240 ± 10) ± 280	$346 \pm 3 \pm 33$	$613 \pm 5 \pm 60$			
Top quark (data-driven) W+jets (data-driven) Drell–Yan (data-driven) Other dibosons (MC)	609 ± 18 250 ± 20 175 ± 3 150 ± 4	3 ± 52 $) \pm 140$ 3 ± 18 4 ± 30	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
Total background	1180 ± 30) ± 150	161 ± 9 ± 21	$205 \pm 11 \pm 24$			
Final state		Tota	l cross section $pp \rightarrow $	WW [pb]			
еμ	$70.6 \pm 1.3(\text{stat}) \stackrel{+5.8}{_{-5.1}}(\text{syst}) \pm 1.4(\text{lumi})$						
ee	$73.6^{+4.2}_{-4.1}(\text{stat}) {}^{+7.5}_{-6.4}(\text{syst}) \pm 1.5(\text{lumi})$						
$\mu\mu$	74.0 \pm 3.0(stat) $^{+7.1}_{-5.9}$ (syst) \pm 1.5(lumi)						
Combined		71.1	$\pm 1.1(\text{stat}) {}^{+5.7}_{-5.0}(\text{syst}) \pm$	1.4(lumi)			

 $\sigma(\text{NNLO}_{\text{tot}})$ theory prediction [3]+[45] 63.2^{+1.6}_{-1.4}(scale)±1.2(PDF)

WW - Systematics

	RSITÄT
--	--------

Sources of uncertainty	еμ	ee	μμ	Combined					
Experimental uncertainties in fiducial and total cross sections [%]									
Integrated luminosity	±2.0	±2.0	±2.0	±2.0					
Pile-up	±1.35	±2.00	±2.03	±1.48					
Trigger	±0.43	±2.8	±3.0	±0.75					
Electron energy scale	±0.42	±1.45		±0.43					
Electron energy resolution	±0.04	±0.23	_	±0.05					
Electron identification and reconstruction	±0.99	±2.19	_	±0.91					
Electron isolation	±0.22	±0.47	_	±0.21					
Muon momentum scale	±0.10	_	±0.39	±0.14					
Muon momentum resolution (ID)	±0.56	_	±1.67	±0.67					
Muon momentum resolution (MS)	±0.09	_	±0.21	±0.11					
Muon identification and reconstruction	±0.41	_	±0.82	±0.43					
Muon isolation	±0.59	_	±1.20	±0.62					
Jet vertex fraction (JVF)	±0.22	±0.26	±0.24	±0.23					
Jet energy scale	±4.1	±3.9	±4.4	±4.1					
Jet energy resolution	±1.35	±1.30	±1.47	±1.35					
$E_{\rm T}^{\rm miss}$ scale soft terms	±1.12	±2.07	±1.85	±1.28					
$E_{\rm T}^{\rm miss}$ resolution soft terms	±0.31	±0.38	±0.53	±0.35					
$p_{\rm T}^{\rm miss}$ scale soft terms	±0.23	±0.38	±0.35	±0.25					
$p_{\rm T}^{\rm miss}$ resolution soft terms	±0.13	±0.19	±0.14	±0.13					
Background uncertainties in fiducial and tota	l cross sectio	ons [%]							
Top-quark background	±1.35	±1.82	±1.42	±1.39					
W+jets & multijet background	±3.6	±3.1	±2.0	±2.8					
Drell–Yan background	±0.46	±3.00	±2.26	±0.86					
MC statistics (top-quark, W+jets, Drell-Yan)	±0.61	±2.03	±1.39	±0.53					
Other diboson cross sections	±0.70	±1.01	±0.55	±0.69					
MC statistics (other diboson)	±0.10	±0.32	±0.18	±0.09					

Systematics above 1% marked in blue

WW - variables as measured by the Detector

27

WW - Differential Distributions

Resources: Current Papers

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Rev. D.

CERN-EP-2016-017 March 8, 2016

Measurements of $W^{\pm}Z$ production cross sections in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings

The ATLAS Collaboration

Abstract

This paper presents measurements of $W^{\pm}Z$ production in pp collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb⁻¹. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^{\pm}Z \rightarrow \ell' \nu \ell \ell} = 35.1 \pm 0.9$ (stat.) ± 0.8 (sys.) ± 0.8 (lumi.) fb, for one leptonic decay channel. In comparison, the nextto-leading-order Standard Model expectation is 30.0 ± 2.1 fb. Cross sections for $W^{\pm}Z$ and $W^{-}Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^{\pm}Z$ system. From the analysis of events with a W and a Z boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^{\pm}Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.

- inclusive cross section measurement of WZ prod.
- differential cross sections for selected variables
- limits on anomalous triple and quartic gauge couplings
- upper limits on electroweak
 WZjj production
- 20.3 ifb @ 8 TeV

WZ - Yields and Cross Section Results

Channel	eee	μee		$e\mu\mu$	$\mu\mu\mu$	All
Data	406	483		539	663	2091
Total expected	336.7 ± 2.2	410.8 ± 2.4	469.1 ±	= 2.1	608.2 ± 3.5	1824.8 ± 7.0
WZ	255.7 ± 1.1	337.2 ± 1.0	$367.0 \pm$	= 1.1	495.9 ± 2.3	1455.7 ± 5.5
Misid. leptons	43.7 ± 1.9	32.2 ± 2.1	$50.2 \pm$	= 1.7	52.8 ± 2.6	178.9 ± 4.2
	25.9 ± 0.2	26.7 ± 0.3	$36.1 \pm$	= 0.3	39.5 ± 0.3	128.2 ± 0.6
tt + V	5.5 ± 0.2	6.7 ± 0.2	7.2 ±	= 0.3	9.1 ± 0.3	28.5 ± 0.5
tZ DDC	4.2 ± 0.1	5.5 ± 0.2	6.0 ±	= 0.2	7.7 ± 0.2	23.3 ± 0.3
DPS	1.2 ± 0.1	1.9 ± 0.1	1.8 ±	= 0.1	2.3 ± 0.2	7.2 ± 0.3
	0.5 ± 0.0	0.7 ± 0.0	0.8 ±	= 0.0	0.9 ± 0.0	3.0 ± 0.1
		000	1100	0111		combined
<u> </u>			$\frac{\mu cc}{\mathbf{D} \cdot \mathbf{L} \cdot \mathbf{L}}$		$\frac{\mu\mu\mu}{\mu}$	
Source			Relati	ve ur	certainti	es [%]
e energy scal	le	0.8	0.4	0.4	0.0	0.3
e id. efficient	су	2.9	1.8	1.0	0.0	1.0
μ momentum	n scale	0.0	0.1	0.1	0.1	0.1
μ id. efficien	су	0.0	0.7	1.3	2.0	1.4
$E_{\rm T}^{\rm miss}$ and je	ts	0.3	0.2	0.2	0.1	0.3
Trigger		0.1	0.1	0.2	0.3	0.2
Pileup		0.3	0.2	0.2	0.1	0.2
Misid. leptor	ns backgrou	nd 2.9	0.9	3.1	0.9	1.3
ZZ backgrou	und	0.6	0.5	0.6	0.5	0.5
Other backg	rounds	0.7	0.7	0.7	0.7	0.7
Uncorrelated	l	0.7	0.6	0.5	0.5	0.3
Total system	natics	4.5	2.6	3.7	2.5	2.4
Luminosity		2.2	2.2	2.2	2.2	2.2
Statistics		6.2	5.4	5.3	4.7	2.7
Total		8.0	6.3	6.8	5.7	4.2

WZ - Differential Distributions

Resources: Current Papers

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2014-244 Submitted to: JHEP

Measurement of the WW + WZ cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum, and two jets with the ATLAS detector at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Abstract

The production of a W boson decaying to $e\nu$ or $\mu\nu$ in association with a W or Z boson decaying to two jets is studied using $4.6~{\rm fb}^{-1}$ of proton–proton collision data at $\sqrt{s}=7~{\rm TeV}$ recorded with the ATLAS detector at the LHC. The combined WW+WZ cross section is measured with a significance of 3.4σ and is found to be $68\pm7~({\rm stat.})\pm19~({\rm syst.})$ pb, in agreement with the Standard Model expectation of $61.1\pm2.2~{\rm pb}.$ The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.

- inclusive cross section measurement of WW+WZ prod.
- limits on anomalous triple gauge couplings
- 4.6 ifb @ 7 TeV

WW/WZ

Variable	Requirement	 highlights show mainly affected
$N_{\rm Leptons}$ with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$	= 1	hackground
$E_{\rm T}^{\rm miss}$ [GeV]	> 30	buckground
$M_{ m T}^{ m W}$	40	
$ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}), j_1) $	> 0.8	
$N_{\rm Jets}$ with $p_{\rm T} > 25$ GeV and $ \eta < 2.8$	≤ 2	 main uncertainties:
$N_{\rm Jets}$ with $p_{\rm T} > 25 \text{ GeV}$ and $ \eta < 2.0 \text{ and } p_{\rm T}^{\rm leadjet} > 30 \text{ GeV}$	=2	• W/7 lets background
$ \Delta\eta(j_1,j_2) $	< 1.5	• • • • • • • • •
$ \Delta R(j_1, j_2) $ if $p_{\rm T}^{\rm ij} < 250 { m GeV}$	> 0.7	 Jet measurement
$m_{jj} [{ m GeV}]$	[25, 250]	MC statistics

WW and WZ (shape taken from MC, cross section measured)

W+Jets and Z+Jets (shape from MC, normalisation fitted in cross section determination)

multi jet (completely data driven)

top (taken from MC, normalisation fitted in cross section determination)

WV Cross Section Results

	е	μ
Data	127650	134846
tot exp.	128000 ± 17000	135000 ± 19000
WW signal	1435 ± 70	1603 ± 79
WZ signal	334 ± 23	370 ± 26
tot bkg.	126000 ± 17000	132000 ± 19000

Measured:

$$\sigma_{\rm fid} = 1.37 \pm 0.14 (\text{stat.}) \pm 0.37 (\text{syst.}) \text{ pb}$$

$$\sigma_{\rm tot} = 68 \pm 7 (\text{stat.}) \pm 19 (\text{syst.}) \text{ pb}$$

Prediction:

 $\sigma_{\rm tot} = 61.1 \pm 2.2 \ \rm pb$

WW/WZ Yields

Signal processes	e	μ
WW	1435 ± 70	1603 ± 79
WZ	334 ± 23	370 ± 26
Background processes		
W+ jets	$(107 \pm 21) \times 10^3$	$(116 \pm 23) \times 10^3$
Z+ jets	$(55 \pm 11) \times 10^2$	$(46.3 \pm 9.3) \times 10^2$
$tar{t}$	$(47.2 \pm 7.1) \times 10^2$	$(47.2 \pm 7.1) \times 10^2$
Single-top	$(20.2 \pm 3.0) \times 10^2$	$(20.5 \pm 3.1) \times 10^2$
Multijet	$(67 \pm 10) \times 10^2$	$(50.5 \pm 7.6) \times 10^2$
ZZ	19.2 ± 3.8	21.1 ± 4.2
Total SM prediction	$(128 \pm 17) \times 10^3$	$(135 \pm 19) \times 10^3$
Total Data	127650	134846