

Ultra-peripheral heavy-ion collisions with CMS

Daniel Tapia Takaki University of Kansas

XXIV International Workshop on Deep Inelastic Scattering and related subjects (DIS) 2016 DESY, Hamburg, Germany - 13 April, 2016

LHC: the most energetic photon source ever built

For gamma-A: c.m.s energy W < 500 GeV (PbPb)

For gamma-p: c.m.s energy W < 1.5 TeV (pPb)

UPC studies using heavy ions with CMS at DIS 2016

- Coherent J/ψ photoproduction in ultraperipheral Pb-Pb collisions at sNN=2.76 TeV HIN-12-009 <u>http://cds.cern.ch/record/1971267</u> This talk
- Exclusive Upsilon in ultra-peripheral p-Pb collisions at 5.02 TeV FSQ-13-009
 See Ruchi Chudasama's talk

Vector meson photoproduction

Available DGLAP analysis at NLO show large uncertainties at small scales and x

CMS: Compact Muon Solenoid

UPC trigger 2011 PbPb run

Tracker & calorimeter cuts ensure exclusivity, muons reconstruct J/ψ

UPC trigger 2011 PbPb run

Coherent J/ Ψ photoproduction in Pb-Pb

$$\frac{d\sigma_{X_n 0_n}^{coh}}{dy}(J/\psi) = \frac{N_{coh}^{J/\psi}}{BR(J/\psi \to \mu^+ \mu^-) \cdot \mathcal{L}_{int} \cdot \Delta y \cdot (A \times \varepsilon)^{J/\psi}}$$

- The acceptance and reconstruction efficiency are estimated from MC and found to be 12%
- The trigger efficiency is measured from data and found to be 50%

Coherent J/Ψ photoproduction Systematic uncertainties

	-
Source	Uncertainty
(1) Signal extraction	5%
(2) Neutron tagging	6%
(3) HF energy threshold	2%
(4) MC acceptance corrections	1%
(5) ZDC efficiency estimation	3%
(6) Tracking reconstruction	4%
(7) Int. luminosity determination	5%
(8) Branching fraction	1%
Total	11%

Identifying neutrons with the ZDC

First measurement of break-up modes for UPC J/ψ

XnOn single-sided with any number of neutrons

XnXn double-sided with any number of neutrons on either side

1n1n double-sided with only one neutron on each side

J/ ψ with $p_{\rm T} < 0.15 {\rm GeV}/c$	$X_n X_n / X_n 0_n$	-	$1_n 1_n / X_n 0_n$
Data	$0.36 {\pm} 0.04$	-	$0.03 {\pm} 0.01$
STARLIGHT	0.37	-	0.02
GSZ	0.32	-	0.02

CMS-PAS-HIN-12-009 (2014)

For the $X_n 0_n$ mode the coherent cross section is $d\sigma/dy=0.37 \pm 0.04$ (stat) ± 0.04 (syst) mb

This is the dominant mode that has neutron emission

Phys. Lett. B718 (2013) 1273-1283

Eur. J. Phys. C73, 2617 (2013)

CMS-PAS-HIN-12-009 (2014)

Cross section for Xn0n in CMS is scaled up to the total cross section STARLIGHT.

Exclusive J/ Ψ in photon-proton

Phys. Rev. Lett. 113 (2014) 23, 232504

Impulse approximation: Model independ of exclusive J/Ψ data in gamma-proton *i.e. No nuclear effects*

> Experimental evidence of nuclear effects in the Pb at low Bjorken-x

Nuclear gluon density

$$S_A(W_{\gamma p}) = \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = 0.61$$

Coherent J/Ψ 2015 PbPb run

CMS Experiment at LHC, CERN Data recorded: Thu Nov 26 00:39:30 2015 CET Run/Event: 262620 / 11202709 Lumi section: 217 Orbit/Crossing: 56785710 / 3145

> dimuon object invariant mass = 3.05 GeV

Many new channels will be available with innovative triggers in Run 2

Vector meson photoproduction

Light-by-light

UPC DiJet

Summary

- UPC quarkonia offer a clean probe of the initial state, in particular the nuclear gluon density
- ALICE and CMS coherent J/ψ cross sections favors theoretical models including nuclear gluon shadowing
 - Experimental evidence of nuclear effects in the Pb for small x
- Break-up ratios are consistent with theoretical models using multiple photon exchange
- The 2015 PbPb run offers the opportunity to expand the UPC vector meson photoproduction program and potentially new objects like UPC diets and diphotons