Measurement of the cross-section ratio $\sigma_{\psi(2 \mathrm{~s})} / \sigma_{\mathrm{J} / \psi(1 \mathrm{~s})}$ in deep inelastic exclusive ep scattering at HERA
[ arXiv:1601.03699 ]


Universität Hamburg der forschung | DER lehre | DER bildung

Nataliia Kovalchuk (University of Hamburg) on behalf of the ZEUS Collaboration


XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects 11-15 April 2016 DESY Hamburg

## HERA and ZEUS



# Diffractive vector meson (VM) production at HERA 

elastic (exclusive)

proton-dissociative



## Kinematics of the process

$\begin{array}{ll}Q^{2} \text { — photon virtuality } & \left.\begin{array}{l}Q^{2}<1 G^{2}-\gamma p \\ Q^{2} \geq 1 G^{2}-\end{array}\right)\end{array}$
W - photon-proton CMS energy
t - 4-mom. transfer squared at proton vertex
$Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2}$
$W^{2}=(q+P)^{2}$
$t=\left(P-P^{\prime}\right)^{2}$

## $\sigma / \sigma$ <br> $\psi(2 S)^{J / \psi(1 S)}$



Ratio $\quad R=\frac{\sigma_{\gamma p \rightarrow \psi(2 S) p}}{\sigma_{\gamma p \rightarrow J / \psi p}}$ gives information about the

```
            node
```

sensitive to radial wave function of charmonium
$\psi(2 S)$ wave function different from $\mathrm{J} / \psi$ wave function:

- Has a node at $\approx 0.35 \mathrm{fm}$
- $\left\langle r_{\psi(2 S)}^{2}\right\rangle \approx 2\left\langle r^{2}{ }_{J / \psi(1 S)}\right\rangle$
pQCD model calculations predicts $\mathrm{R} \sim 0.17$ ( PhP )


## Investigated channels and samples

$$
\begin{array}{ll}
\Psi(2 S) & \rightarrow \mathrm{J} / \Psi(1 S) \pi^{+} \pi^{-} ; \mathrm{J} / \Psi(1 S) \rightarrow \mu^{+} \mu^{-} \\
\Psi(2 \mathrm{~S}) & \rightarrow \mu^{+} \mu^{-} \\
\mathrm{J} / \Psi(1 \mathrm{~S}) & \rightarrow \mu^{+} \mu^{-}
\end{array}
$$

Data samples
HERA I + HERA II data (1996 - 2007) Integrated luminosity: $468 \mathrm{pb}^{-1}$

## MC-data samples

Signal MC: DIFFVM for exclusive VM production


Background MC: GRAPE for Bethe-Heitler mu-pair production


## Selection criteria

- Scattered e with E> 10 GeV reconstructed in CAL
- Scattered $p$ undetected

$$
\begin{gathered}
30 \leq W \leq 210 \mathrm{GeV} \\
2 \leq \mathrm{Q}^{2} \leq 80 \mathrm{GeV}^{2} \\
|\mathrm{t}| \leq 1 \mathrm{GeV}^{2}
\end{gathered}
$$

- Two reconstructed tracks identified as muons and for $\psi(2 S) \rightarrow \mathrm{J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-}$additionally two pion tracks from $\mu \mu$ vertex
- Nothing else in detector (above noise)



## Background subtraction



Sideband of the signal: $2.00<\mathrm{M}_{\mu \mu}<2.62 \mathrm{GeV}$ and $4.05<\mathrm{M}_{\mu \mu}<5.00 \mathrm{GeV}$ fitted by straight line

## $\psi(2 S) \rightarrow \mathrm{J} / \psi(1 S) \pi^{+} \pi^{-}$

ZEUS



- ZEUS $468 \mathrm{pb}^{-1}$

$$
\begin{gathered}
\Delta M=M_{\mu \mu \pi \pi}-M_{\mu \mu} \\
3.02<M_{\mu \mu}<3.17 \mathrm{GeV} \\
0.5<\Delta \mathrm{M}<0.7 \mathrm{GeV}
\end{gathered}
$$



After cut on M

## $\sigma_{\psi(2 \mathrm{~s})} / \sigma_{\mathrm{J} / \psi(1 \mathrm{~s})}$ estimation

$$
\begin{aligned}
& R_{J / \psi \pi \pi}= \frac{\sigma_{\psi(2 S)}}{\sigma_{J / \psi(1 S)}}=\frac{N_{\psi(2 S)}}{N_{J / \psi(1 S)}} \cdot \frac{A c c_{J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}}}{A c c_{\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}}} \cdot \frac{1}{B R_{\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}}} \\
& R_{\mu \mu}= \frac{\sigma_{\psi(2 S)}}{\sigma_{J / \psi(1 S)}}=\frac{N_{\psi(2 S)}}{N_{J / \psi(1 S)}} \cdot \frac{A c c_{J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}}}{A c c_{\psi(2 S) \rightarrow \mu^{+} \mu^{-}}} \cdot \frac{B R_{J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}}}{B R_{\psi(2 S) \rightarrow \mu^{+} \mu^{-}}} \\
& \qquad A c c_{i}=\frac{N_{i}^{\text {reco }}}{N_{i}^{\text {true }}} \\
& \operatorname{BR}\left(\psi(2 S) \rightarrow \mathrm{J} / \psi(1 S) \pi^{+} \pi^{-}\right)=(33.6 \pm 0.4) \% \\
& \operatorname{BR}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=(7.7 \pm 0.8) \times 10^{-3} \\
& \operatorname{BR}\left(J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}\right)=(5.93 \pm 0.06) \%
\end{aligned}
$$

## Results

| $R_{J / \psi \pi \pi}$ | $0.26 \pm 0.03_{-0.01}^{+0.01}$ |
| :--- | :---: |
| $R_{\mu \mu}$ | $0.24 \pm 0.05_{-0.03}^{+0.02}$ |
| $R_{\text {comb }}^{+0 .}$ | $0.26 \pm 0.02_{-0.01}^{+0.01}$ |
| $R_{\psi(2 S)}$ | $1.1 \pm 0.2_{-0.1}^{+0.2}$ |

$$
\begin{gathered}
30 \leq \mathrm{W} \leq 210 \mathrm{GeV} \\
2 \leq \mathrm{Q}^{2} \leq 80 \mathrm{GeV}^{2} \\
|\mathrm{t}| \leq 1 \mathrm{GeV}^{2} \\
R_{\psi(2 S)}=R_{J / \psi \pi \pi} / R_{\mu \mu}
\end{gathered}
$$

| $Q^{2}\left(\mathrm{GeV}^{2}\right)$ | $R_{J / \psi \pi \pi}$ | $R_{\mu \mu}$ | $R_{\text {comb }}$ | $R_{\psi(2 S)}$ |
| :---: | :---: | :---: | :---: | :---: |
| $2-5$ | $0.21 \pm 0.07_{-0.03}^{+0.04}$ | $0.10 \pm 0.09_{-0.09}^{+0.09}$ | $0.17 \pm 0.05_{-0.02}^{+0.05}$ | - |
| $5-8$ | $0.19 \pm 0.05_{-0.02}^{+0.02}$ | $0.13 \pm 0.06_{-0.03}^{+0.12}$ | $0.17 \pm 0.04_{-0.02}^{+0.05}$ | $1.5 \pm 0.8_{-0.7}^{+0.4}$ |
| $8-12$ | $0.27 \pm 0.05_{-0.01}^{+0.06}$ | $0.29 \pm 0.08_{-0.08}^{+0.03}$ | $0.28 \pm 0.05_{-0.03}^{+0.03}$ | $0.9 \pm 0.3_{-0.4}^{+0.4}$ |
| $12-24$ | $0.27 \pm 0.05_{-0.04}^{+0.04}$ | $0.24 \pm 0.08_{-0.08}^{+0.01}$ | $0.26 \pm 0.05_{-0.01}^{+0.01}$ | $1.1 \pm 0.4_{-0.1}^{+0.6}$ |
| $24-80$ | $0.56 \pm 0.13_{-0.09}^{+0.04}$ | $0.42 \pm 0.17_{-0.04}^{+0.12}$ | $0.51 \pm 0.10_{-0.04}^{+0.04}$ | $1.3 \pm 0.6_{-0.6}^{+0.3}$ |
| $W(\mathrm{GeV})$ | $R_{J / \psi \pi \pi}$ | $R_{\mu \mu}$ | $R_{\text {comb }}$ | $R_{\psi(2 S)}$ |
| $30-70$ | $0.24 \pm 0.07_{-0.13}^{+0.01}$ | $0.24 \pm 0.10_{-0.14}^{+0.03}$ | $0.24 \pm 0.06_{-0.13}^{+0.01}$ | $1.0 \pm 0.5_{-0.2}^{+0.5}$ |
| $70-95$ | $0.30 \pm 0.06_{-0.04}^{+0.01}$ | $0.31 \pm 0.09_{-0.03}^{+0.09}$ | $0.30 \pm 0.05_{-0.03}^{+0.02}$ | $1.0 \pm 0.3_{-0.2}^{+0.1}$ |
| $95-120$ | $0.28 \pm 0.06_{-0.01}^{+0.05}$ | $0.24 \pm 0.08_{-0.04}^{+0.04}$ | $0.27 \pm 0.05_{-0.01}^{+0.03}$ | $1.2 \pm 0.5_{-0.2}^{+0.5}$ |
| $120-210$ | $0.22 \pm 0.05_{-0.01}^{+0.07}$ | $0.17 \pm 0.07_{-0.05}^{+0.02}$ | $0.21 \pm 0.04_{-0.01}^{+0.03}$ | $1.3 \pm 0.6_{-0.2}^{+0.7}$ |
| $\|t\|\left(\mathrm{GeV}^{2}\right)$ | $R_{J / \psi \pi \pi}$ | $R_{\mu \mu}$ | $R_{\text {comb }}$ | $R_{\psi(2 S)}$ |
| $0-0.1$ | $0.23 \pm 0.05_{-0.02}^{+0.02}$ | $0.23 \pm 0.09_{-0.05}^{+0.04}$ | $0.23 \pm 0.04_{-0.02}^{+0.01}$ | $1.0 \pm 0.4_{-0.2}^{+0.3}$ |
| $0.1-0.2$ | $0.22 \pm 0.06_{-0.03}^{+0.02}$ | $0.23 \pm 0.09_{-0.06}^{+0.02}$ | $0.22 \pm 0.05_{-0.02}^{+0.02}$ | $0.9 \pm 0.4_{-0.2}^{+0.5}$ |
| $0.2-0.4$ | $0.27 \pm 0.06_{-0.06}^{+0.06}$ | $0.18 \pm 0.07_{-0.06}^{+0.05}$ | $0.24 \pm 0.04_{-0.02}^{+0.03}$ | $1.5 \pm 0.6_{-0.2}^{+0.5}$ |
| $0.4-1$ | $0.32 \pm 0.06_{-0.03}^{+0.05}$ | $0.30 \pm 0.08_{-0.05}^{+0.02}$ | $0.32 \pm 0.05_{-0.02}^{+0.01}$ | $1.1 \pm 0.3_{-0.1}^{+0.3}$ |

# $\sigma$ 

ZEUS



ZEUS


- Indication of an increase with $Q^{2}$
- Independent of W
- Independent of $|t|$

ZEUS - H1 comparison ZEUS


H1 collaboration:
Eur.Phys.J.C10:373-393,1999
Results agree $-\sigma(\Psi(2 S)) / \sigma(J / \Psi(1 S))$ increases with $Q^{2}$ Improved accuracy thanks to increased integrated
luminosity

## Model predictions

ZEUS


All models exhibit an increase of $\sigma(\Psi(2 S)) / \sigma(J / \Psi(1 S))$ with increasing $Q^{2}$

## HIKT calculations



HIKT - from Huefner et al., use two different form for the dipole cross section calculation and four different potentials to calculate the wave functions; BT and LOG use $m_{c} \approx 1.5 \mathrm{GeV}$, COR and POW use $m_{c} \approx 1.8 \mathrm{GeV}$

The predicted ratio values for the BT model are significantly larger compare to measured data
arXiv:hep-ph/0212322
FIGURE 2. Integrated cross section for elastic photoproduction with real photons ( $Q^{2}=0$ ) calculated with GBW and KST dipole cross sections and for four potentials to generate $J / \psi$ wave functions. Experimental data points from the H1 [20], E401 [21], E516 [22] and ZEUS [23] experiments.

ZEUS


## AR calculations

The IP-Sat prediction is about 20\% lower than that for b-CGC and gives a better description of the data

ZEUS


AR - from Armesto and Rezaeian, calculate the dipole cross section using the Impact-Parameter dependent Color Glass Condensate (b-CGC) and the Saturation (IP-Sat) models

## KMW calculations

The prediction with $\delta=0$ gives a good description of the data and the prediction with $\delta=2$ is below the measured values at higer $\mathrm{Q}^{2}$

ZEUS


KMW - from Kowalski, Motyka, Watt, based on the QCD description and an assumption of universality of the quarkonia production mechanism $\delta=0$ for non-relativistic wave functions
$\delta=2$ for relativistic boosted Gaussian model

## FFJS calculations

Describe the data reasonably well


FFJS - from Fazio et al.,
use a two component Pomeron model to predict the cross sections for VM production

## KNNPZZ calculations

The model used in original H 1 publication

Describe the data well


KNNPZZ - from Nemchik et al., describe the BFKL pomeron in terms of the colour-dipole cross section which is a solution of the generalised BFKL equations

## LM calculations

Good description of the data
ZEUS


LM - from Lappi and Mäntysaari, use dipole picture in the IP-Sat model to predict VM production

## Summary

- The pQCD prediction of $\sigma(\Psi(2 S)) / \sigma(\mathrm{J} / \Psi(1 \mathrm{~S}))$ ratio rise with $Q^{2}$ and is proved
- The accuracy of the result has been improved compared to the H1 HERA I results
- $\sigma(\psi(2 \mathrm{~S})) / \sigma(\mathrm{J} / \Psi(1 \mathrm{~S}))$ ratio is compared with models of VM production, some discrimination of the different models is possible
- $\sigma(\psi(2 S)) / \sigma(J / \psi(1 S))$ independent of $W$ and $|t|$
- arXiv:1601.03699


## Thank you for your attention!

## Backup: Data-MC comparison for $\mathrm{J} / \Psi(1 \mathrm{~S})$

ZEUS


 $\mathrm{J} / \psi(1 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}$

- ZEUS $468 \mathrm{pb}^{-1}$
$\square$ DIFFVM + BH
$\square \square \mathrm{BH}$


## Backup: Data-MC comparison for $\psi(2 S) \rightarrow \mu^{+} \mu^{-}$ ZEUS





$$
\psi(2 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}
$$

- ZEUS $468 \mathrm{pb}^{-1}$
$\square$ DIFFVM + BH


MC weighted in $Q^{2},|t|$ and $\psi(2 S)$ decay angles using $J / \psi(1 S) \rightarrow \mu^{+} \mu^{-}$weights

Good description of the data by the weighted Monte Carlo

Backup: Data-MC comparison for $\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}$ ZEUS



$\psi(2 S) \rightarrow J / \psi(1 S) \pi^{+} \pi^{-}$

- ZEUS $468 \mathrm{pb}^{-1}$
$\square$ DIFFVM

MC weighted in $Q^{2}$ and $|t|$ using $\mathrm{J} / \Psi \rightarrow \mu^{+} \mu^{-}$weights

Good description of the data by the weighted Monte Carlo

