Measurement of the cross-section ratio $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ in deep inelastic exclusive *ep* scattering at HERA

[arXiv:1601.03699]

Nataliia Kovalchuk (University of Hamburg) on behalf of the **ZEUS Collaboration**

XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects 11-15 April 2016 DESY Hamburg

 $\sqrt{s} = 318 \, GeV$

HERA Data taking: 1992 - 2007

11-15 April 2016 DESY Hamburg

Hermetic

multipurpose detector

~0.5 fb

Diffractive vector meson (VM) production at HERA

 $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ in DIS

• Has a node at ≈ 0.35 fm

•
$$< r^2_{\psi(2S)} > \approx 2 < r^2_{J/\psi(1S)} >$$

pQCD model calculations predicts R ~ 0.17 (PhP) and rise of R with Q² (DIS)

Investigated channels and samples

$$\begin{array}{ll} \psi(2S) & \rightarrow J/\psi(1S) \ \pi^{+} \ \pi^{-}; \ J/\psi(1S) \ \rightarrow \mu^{+} \ \mu^{-} \\ \psi(2S) & \rightarrow \mu^{+} \ \mu^{-} \\ J/\psi(1S) & \rightarrow \mu^{+} \ \mu^{-} \end{array}$$

Selection criteria

- Scattered e with E > 10 GeV reconstructed in CAL
- Scattered p undetected
- Two reconstructed tracks identified as muons. and for $\psi(2S) \rightarrow J/\psi(1S) \pi^{\dagger}\pi^{-}$ additionally two pion tracks from $\mu\mu$ vertex
- Nothing else in detector (above noise)
- e р ZR View XY View XY View ZR View $\psi(2S) \rightarrow J/\psi(1S) \pi^+\pi^ J/\psi(1S) \rightarrow \mu^+\mu^-$ 11-15 April 2016 DESY Hamburg

 $30 \leq W \leq 210 \text{ GeV}$

 $2 \leq Q^2 \leq 80 \text{ GeV}^2$

 $|t| \leq 1 \text{ GeV}^2$

Background subtraction

fitted by straight line

≤ 3 events background

$\sigma_{\psi(2S)} / \sigma_{J/\psi(1S)}$ estimation

$$\begin{aligned} R_{J/\psi\pi\pi} &= \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}} = \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S)\to\mu^+\mu^-}}{Acc_{\psi(2S)\to J/\psi\pi^+\pi^-}} \cdot \frac{1}{BR_{\psi(2S)\to J/\psi\pi^+\pi^-}} \\ R_{\mu\mu} &= \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}} = \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S)\to\mu^+\mu^-}}{Acc_{\psi(2S)\to\mu^+\mu^-}} \cdot \frac{BR_{J/\psi(1S)\to\mu^+\mu^-}}{BR_{\psi(2S)\to\mu^+\mu^-}} \end{aligned}$$

$$Acc_i = \frac{N_i^{reco}}{N_i^{true}}$$

 $BR(\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-}) = (33.6 \pm 0.4) \%$ $BR(\psi(2S) \rightarrow \mu^{+}\mu^{-}) = (7.7 \pm 0.8) \times 10^{-3}$ $BR(J/\psi(1S) \rightarrow \mu^{+}\mu^{-}) = (5.93 \pm 0.06)\%$

Results

$R_{J/\psi\pi\pi}$	$0.26 \pm 0.03^{+0.01}_{-0.01}$
$R_{\mu\mu}$	$0.24 \pm 0.05^{+0.02}_{-0.03}$
$R_{\rm comb}$	$0.26 \pm 0.02^{+0.01}_{-0.01}$
$R_{\psi(2S)}$	$1.1 \pm 0.2^{+0.2}_{-0.1}$

 $\begin{array}{l} 30 \leq W \leq 210 \; \text{GeV} \\ 2 \leq Q^2 \leq 80 \; \text{GeV}^2 \\ |t| \leq 1 \; \text{GeV}^2 \end{array}$

 $R_{\psi(2S)} = R_{J/\psi \pi\pi}/R_{\mu\mu}$

$Q^2 \; ({ m GeV}^2)$	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
2 - 5	$0.21 \pm 0.07^{+0.04}_{-0.03}$	$0.10 \pm 0.09^{+0.09}_{-0.09}$	$0.17 \pm 0.05 ^{+0.05}_{-0.02}$	_
5 - 8	$0.19 \pm 0.05^{+0.02}_{-0.02}$	$0.13 \pm 0.06^{+0.12}_{-0.03}$	$0.17 \pm 0.04^{+0.05}_{-0.02}$	$1.5 \pm 0.8^{+0.4}_{-0.7}$
8 - 12	$0.27 \pm 0.05^{+0.06}_{-0.01}$	$0.29 \pm 0.08^{+0.03}_{-0.08}$	$0.28 \pm 0.05^{+0.03}_{-0.03}$	$0.9 \pm 0.3^{+0.4}_{-0.1}$
12 - 24	$0.27 \pm 0.05^{+0.04}_{-0.03}$	$0.24 \pm 0.08^{+0.01}_{-0.08}$	$0.26 \pm 0.05^{+0.01}_{-0.03}$	$1.1 \pm 0.4^{+0.6}_{-0.1}$
24 - 80	$0.56 \pm 0.13^{+0.04}_{-0.09}$	$0.42 \pm 0.17^{+0.12}_{-0.04}$	$0.51 \pm 0.10^{+0.04}_{-0.04}$	$1.3 \pm 0.6^{+0.3}_{-0.6}$
W (GeV)	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
30 - 70	$0.24 \pm 0.07^{+0.01}_{-0.13}$	$0.24 \pm 0.10^{+0.03}_{-0.14}$	$0.24 \pm 0.06^{+0.01}_{-0.13}$	$1.0 \pm 0.5^{+0.5}_{-0.2}$
70 - 95	$0.30 \pm 0.06^{+0.01}_{-0.04}$	$0.31 \pm 0.09^{+0.09}_{-0.03}$	$0.30 \pm 0.05^{+0.02}_{-0.03}$	$1.0 \pm 0.3^{+0.1}_{-0.2}$
95 - 120	$0.28 \pm 0.06^{+0.05}_{-0.01}$	$0.24 \pm 0.08^{+0.04}_{-0.05}$	$0.27 \pm 0.05^{+0.03}_{-0.01}$	$1.2 \pm 0.5^{+0.5}_{-0.2}$
120 - 210	$0.22 \pm 0.05^{+0.07}_{-0.01}$	$0.17 \pm 0.07^{+0.02}_{-0.05}$	$0.21 \pm 0.04^{+0.03}_{-0.01}$	$1.3 \pm 0.6^{+0.7}_{-0.2}$
$ t \; (\mathrm{GeV}^2)$	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
0 - 0.1	$0.23 \pm 0.05^{+0.02}_{-0.02}$	$0.23 \pm 0.09^{+0.04}_{-0.05}$	$0.23 \pm 0.04^{+0.01}_{-0.02}$	$1.0 \pm 0.4^{+0.3}_{-0.2}$
0.1 - 0.2	$0.22 \pm 0.06^{+0.02}_{-0.03}$	$0.23 \pm 0.09^{+0.02}_{-0.06}$	$0.22 \pm 0.05^{+0.02}_{-0.02}$	$0.9 \pm 0.4^{+0.5}_{-0.2}$
0.2 - 0.4	$0.27 \pm 0.06^{+0.06}_{-0.01}$	$0.18 \pm 0.07^{+0.05}_{-0.06}$	$0.24 \pm 0.04^{+0.03}_{-0.02}$	$1.5 \pm 0.6^{+0.5}_{-0.2}$
0.4 - 1	$0.32 \pm 0.06^{+0.05}_{-0.03}$	$0.30 \pm 0.08^{+0.02}_{-0.05}$	$0.32 \pm 0.05^{+0.01}_{-0.02}$	$1.1 \pm 0.3^{+0.3}_{-0.1}$

Consistent results

HI Collaboration.

Results agree - $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ increases with Q² Improved accuracy thanks to increased integrated Iuminosity

Eur.Phys.J.C10:373-393,1999

Model predictions

ZEUS

11-15 April 2016 DESY Hamburg

HIKT calculations

arXiv:hep-ph/0212322

FIGURE 2. Integrated cross section for elastic photoproduction with real photons ($Q^2 = 0$) calculated with GBW and KST dipole cross sections and for four potentials to generate J/ψ wave functions. Experimental data points from the H1 [20], E401 [21], E516 [22] and ZEUS [23] experiments.

HIKT — from <u>Huefner</u> et al., use two different form for the dipole cross section calculation and four different potentials to calculate the wave functions; BT and LOG use $m_c \approx 1.5$ GeV, COR and POW use $m_c \approx 1.8$ GeV

> The predicted ratio values for the BT model are significantly larger compare to measured data

AR calculations

The IP-Sat prediction is about 20% lower than that for b-CGC and gives a better description of the data

AR — from <u>Armesto</u> and <u>Rezaeian</u>, calculate the dipole cross section using the Impact-Parameter dependent Color Glass Condensate (b-CGC) and the Saturation (IP-Sat) models

KMW calculations

The prediction with $\delta = 0$ gives a good description of the data and the prediction with $\delta = 2$ is below the measured values at higer Q²

KMW — from <u>Kowalski</u>, <u>Motyka</u>, <u>Watt</u>, based on the QCD description and an assumption of universality of the quarkonia production mechanism $\delta = 0$ for non-relativistic wave functions $\delta = 2$ for relativistic boosted Gaussian model

FFJS calculations

reasonably well

FFJS — from Fazio et al., use a two component Pomeron model to predict the cross sections for VM production

KNNPZZ calculations

KNNPZZ — from <u>Nemchik</u> et al.,

describe the BFKL pomeron in terms of the colour-dipole cross section which is a solution of the generalised BFKL equations

LM calculations

Good description of the data

LM — from <u>Lappi</u> and <u>Mäntysaari</u>, use dipole picture in the IP-Sat model to predict VM production

Summary

- The pQCD prediction of $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ ratio rise with Q² and is proved
- The accuracy of the result has been improved compared to the H1 HERA I results
- $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ ratio is compared with models of VM production, some discrimination of the different models is possible
- $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ independent of W and [t]
- arXiv:1601.03699

Thank you for your attention!

Backup: Data-MC comparison for $J/\psi(1S)$

Good description of the data by the weighted Monte Carlo

Good description of the data by the weighted Monte Carlo

Backup: Data-MC comparison for $\psi(2S) \rightarrow J/\psi(1S) \pi^+\pi^-$

Good description of the data by the weighted Monte Carlo