The CT14 MC replicas

Tie-Jiun Hou
In collaboration with CTEQ-TEA

Southern Methodist University

April 13, DIS16, DESY, Hamburg




CTEQ-TEA group

o CTEQ - Tung et al. (TEA)
in memory of Prof. Wu-Ki Tung, who established CTEQ
Collaboration in early 90's.

o Current members:
Sayipjamal Dulat (Xinjiang U.)
Tie-Jiun Hou, Pavel Nadolsky (Southern Methodist U.)
Jun Gao(Argonne Nat. lab.)
Marco Guzzi(U. of Manchester)
Joey Huston, Jon Pumplin, Carl Schmidt,
Dan Stump, C.-P. Yuan(Michigan State U.)



CT14 NNLO error PDFs

e CT10 includes only pre-LHC data
o CT14 is the first CT analysis including LHC Run 1 data

e CT14 also includes the new Tevatron DO Run 2 data on
W-electron charge asymmetry

e CT14 uses a more flexible parametrization in the
non-perturbative PDFs.

e We have published its results at NNLO, NLO and LO.



Monte-Carlo replicas for CT14 asymmetric errors

u (x,Q) at Q=1.3 GeV, 68% c.l.,asym. std. dev.
CT14 NNLO Hessian (solid), MC (dashed)

Green:Hessian 68% c.l. errors
Blue:Asymmetric MC replicas
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Generation of MC replica from CT14 Hessian eigenvector
sets

MC replicas for f,(x, Q) = f....

o are constructed from the best-fit (central) PDF values f, and
68% c.l. extreme displacements f.; along eigenvector directions
u;, i =1, ..., 28 in parameter space near X2 minimum

o retain exact information about boundaries of 68%/90%
probability regions; approximate probability everywhere using
Gaussian approximation

e approximate asymmetric Hessian errors using modified standard
deviations
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Sources of asymmetry of PDF errors for QCD predictions

x? = PDFs f,(x, Q@) = Cross section X

1. The asymmetry of x? is usually mild near
the minimum; can approximate

D
X exg ) R
i=1

Where R; (rescaled z;) obeys the standard
normal distribution:

Probability({R}) ~ e~ 21 Ri/2

f:({R}) = £(0,0,...,R: = £1,...,0)

1 1
frii({RY) = £(0,0,...Ri=+—, .., Ri = +—,0
Lii({RY) = F( T3 R = £50)

Additional x? contribution from dynamic penalty (Tier-2) for CT
PDFs.




Sources of asymmetry of PDF errors for QCD predictions

x?> = PDFs f,(x, Q) = Cross section X 2. PDFs and cross
sections are generally asymmetric function of R;

D

92X
X({R}) = X({0}) +Z Ri+ > ZaRaR
Evaluate partial derivatives by finite differences
oX .
3R, ~ (X4 — X=i)/2 need 2D eigenvectors sets
0?X .
ET ~ Xy —X_j—2Xo need 2D eigenvectors sets
9?X

OR;OR; ~ (Xyi + Xoi—j — Xyi—j — X=i4j)/2 need 2D(D — 1) New evsets
oy



Symmetric PDF errors

Keep only linear terms

X(RY) = X({0) + 32 TR,

1.The Hessian method produces a symmetric master formula ( Stump,

Pumplin, Tung, et al., 1999):

D (Xei = X)?

i

N -

S X = |AX| =
2.The MC generation produces N,., symmetric replicas

x, X_;
x®) = x({0}) +Z + PRW. k=1, Nyep

R,.(k) are normally distributed. We choose N, = 1000.



Hessian and MC symmetric errors for PDFs (X=f)...

agree well. The MC mean can
deviate when the PDFs vanish

d (x,Q) at Q=100 GeV at 90% c.I.
CT14 NNLO Hessian (solid), MC (dashed)

The MC error is estimated by
the standard deviation of X,

Ggg- X = V(X = (X))?)

s (x,Q) at Q=100 GeV at 90% c.l.
CT14 NNLO Hessian (solid), MC (dashed)
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CT14 asymmetric PDF errors

Include the diagonal second derivatives

D X—Xli 18
X{RY) = X({0}) + > =5 Ri+ 5 > (Xii+ Xoj = 2X0)R?
i=1 ij=1

1.The Hessian method produces asymmetric master formulas
(Nadolsky, Sullivan, 2001)

5g’>x = \/Z (max[X+,' — Xo, X_i = Xo, 0])?
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CT14 asymmetric PDF errors

2.The MC generation produces N, asymmetric replicas

X® = Xx({0}) + oX) — (6X)

D D
ox = S 2= X g L LS e x - ax) (RW)?
i=1 2 I 2 ij=1 I

With this definition,(X) = X({0}), does not fluctuate about X({0})
The MC errors can be estimated by asymmetric standard

deviations,
b7 X = w(x — (X)x> 0

MC <x — \/ e

Alternatively,éé\gc’<X can be estimated by 68% central probability
intervals for ordered X; values (more cumbersome and noisy than
the std. deviations)




Comparison with Watt-Thorne algorithm

CT14 algorithm:

D X X 1 D (k)
+i T A=
X({0}) + ; f +35 z:: Xii 4 Xoj = 2X0)(R™)? = (0X)
S EX = \/ 2) x2 () Recommended
Asymmetrlc algorlthm in Watt Thorne (arXiv:1205.4024)
X({0}) +Z R Different from the
CT14 algorithm if

X [Xi—X, R¥>o0 RY £ 0,41

R | X—-X_, RM<o
We find that separate averaging of positive and negative

. . . . H=, .
displacements is essential for recovering the asymmetry of dg5~ X in
CT14.



Asymmetric standard deviations for PDFs (X = f)

Ratio to central CT14 NNLO (Hessian)
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Asymmetric uncer., preliminary

d (x,Q) at Q=1.3 GeV, 68% c.l.,asym. std. dev.
CT14 NNLO Hessian (solid), MC (dashed)

Asymmetric uncer., preliminary

s (x,Q) at Q=1.3 GeV, 68% c.l.,asym. std. dev.
CT14 NNLO Hessian (solid), MC (dashed)
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Green: Hessian std. deviation

Red: Symmetric MC std. dev.

Thin blue: Asymmetric MC std. dev.
Thick blue: Asymmetric MC median
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Good agreement between
green and light blue,
smooth behavior



Asymmetric central probability

Asymmetric uncer., preliminary

d (x,Q) at Q=1.3 GeV, 68 and 95% c.|.,asymmetric
CT14 NNLO Hessian (solid), MC (dashed)

intervals

Asymmetric uncer., preliminary

s (x,Q) at Q=1.3 GeV, 68 and 95% c..,asymmetric
CT14 NNLO Hessian (solid), MC (dashed)
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Green: Hessian probability intervals
Red: Symmetric MC generation

Thin blue: Asymmetric MC generation,
Watt-Thorne formula

Thick blue: Asymmetric MC median
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Probability intervals are
more sensitive to behavior
of individual replica




Asymmetric central probability intervals

Asymmetric uncer., preliminary Asymmetric uncer., preliminary

CT14 NNLO Hessian (solid), MC (dashed)

CT14 NNLO Hessian (solid), MC (dashed)
Q=2. GeV, asym. std. deviations

Q=2. GeV, asym. std. deviations

20 2.0
150 150

g g

=] S, e Teeeed

210 =5

3 510 \

5 = 5 .

5 &3
0.5} 05} T
Y —— Y —— - R N S A

10% 10 0.01 0.02 0.05 0.1 0.2 05 0.7 104 10 0.010.02 005 0.1 02 0507

X X

Large deviation happen on
the numerical accuracy
sensitive region.

Green: Hessian probability intervals
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Watt-Thorne formula
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Large x? in replicas

preliminary preliminary
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Typical CT14MC replicas sets have large 2.
Here, we show ? distributions for 1000 replicas, with about 3000
data points (579 for HERA-I) included in the CT14 fit.
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Large x? in replicas

Volume of a ball with radius 1 in n dimensions

. . . . /O
Imagine we construct an N -dimensional g\
— / i
vector R whose coordinates are given by g \
random parameters R; sampled from a =at | \ e
standard normal distribution. 1Y % Sa‘lp‘ef
ob. =9 S~

0 5 10 15 20 25 30
Number of dimensions

N2
J dRy [ AR, [ dRuy [N, R2eEF

N R2
i R

[ dRy [ dRo... [ dRye~ =3

JyS dRRVe™% [dy _ Var(M4l)
(2m)N/2 r%)

(R) =

For N = 28, this formula gives (R) ~ 5.24, that is, a typical
displacement vector of a CT14 replica is more than five standard
units in length.



Agreement between CT14 and CT14MC

preliminary preliminary
Gluon—gluon luminosity, s'?=13 TeV, ly|<5, asym. 68% c.l. QQ luminosity, s"2=13 TeV, ly|<5, asym. 68% c.l.
13 13
12 CT14 NNLO 12 CT14 NNLO
CT14MC NNLO

1.1 \\ CT14MC NNLO
0.8

10 50 100 500 1000 10 50 100 500 1000
My, GeV My, GeV
Good agreement in the typical region for gluon-gluon and q-g
luminosity. The deviation at large and small M, come from

numerical fluctuation.
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Agreement between CT14 and CT14MC
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Agreement between CT14 and CT14MC
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Summary

In this work, the asymmetric CT14MC replica set with 1000 replicas
is generated base on the CT14 Hessian eigen vector sets. Learning
from the Hessian asymmetric master formula, the diagonal second

derivative contribution is included.

Uncertainties between CT14 Hessian eigenvector set and CT14MC

replica set are in good agreement. Deviation mainly come from the
numerical fluctuation and the dynamic penalty of the CT14 Hessian
eigenvector set.
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Hessian method
spartyness and Tier-2 penalty

The x?/ N,y is not sufficient to discribe the goodness-of-fit for individual
experiment. The chi-square probability for x?/Np; > 11.0/10 is 0.358; the
probability for x2/N,: > 110.0/100 is 0.232. And the probability for

x2/N > 1100.0/1000 is only 0.015. For this reason, we define the effective
Gaussian variable, the " spartyness”, S,,,

C(><2,IV):/0 P(€, N)de = / _XZ/Q"X.

In practice, we use the approximation for S,

(18N)3/2 6 9N

18Npe +1 |6 —In(x?/Npt) 9Ny — 1

Ideally, the variable S, has an approximately Gaussian distribution with mean 0
and standard deviation 1. Additional Tier-2 penalty for each experiment to

preventing poor fit for individual experiment. (S.Dulat et.al. Phys.Rev. D89
(2014) no.11, 113002)

S~ L(x3, Nyt) =
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