A determination of m_c(m_c) from HERA data using a matched heavy flavor scheme

Valerio Bertone

University of Oxford

April 12, 2016, DESY, Hamburg

DIS2016

Main contributors: V.B., Achim Geiser, Ringaile Placakyte, Voica Radescu, and Juan Rojo

Motivation

- The **mass of the charm quark** is one of the fundamental parameters of the Standard Model.
- A precise and faithful determination is relevant:
 - in principle: as a **fundamental test** of the Standard Model,
 - in practice: as a requirement for accurate **phenomenology at the LHC**.
- The current global-average value of the charm mass in the $\overline{\text{MS}}$ renormalization scheme is $\mathbf{m_c(m_c)} = 1.275 \pm 0.025 \text{ GeV}$:
 - dominated by the high-precision $e^+e^- \rightarrow Q\overline{Q}$ data,
 - interesting to provide **alternative determinations** from other processes:
 - to test the robustness of the global average,
 - to attempt to further reduce the present uncertainty.

• Charm production in DIS is directly sensitive to the charm mass:

- precise HERA data available,
- Also the new inclusive **combined HERA 1+2** data provide a constraint.

Current Status

- A competitive determination of the charm mass from DIS data has already been achieved in the context of PDF fits to HERA DIS data:
 - **H1-ZEUS** and **Alehkin et al.** determinations are included in the PDG value.
 - both obtained in the so-called **FFNS** with of $\overline{\text{MS}}$ heavy quark masses.
- Employing **MS** heavy quark masses is crucial in this context:
 - improvement of **perturbative convergence**,
 - direct handle on $m_c(m_c)$.
- So far, **GM-VFNSs** (e.g. FONLL, ACOT, TR) have mostly employed the **pole mass** definition for heavy quark masses:
 - difficult to determine $m_c(m_c)$ even indirectly because of the **poor convergence** of the perturbative relation that connects \overline{MS} and pole mass definitions.
 - pole mass definition intrinsically affected by non-perturbative O(Λ_{QCD}) corrections (renormalons).

What's new (Theory)

- We have formulated the **FONLL scheme in terms of the MS masses**:
 - first step towards a **direct determination of m_c(m_c)** in the FONLL scheme,
 - **alternative/complementary** mass scheme to the FFNS.
- Two main steps required:
 - 1. re-expressing the **massive coefficient functions**, usually given in terms of pole masses, in terms of MS masses:
 - similar to what has been done by S. Alehkin and S.O. Moch with a relevant difference regarding the RG running of the masses.
 - 2. Matching conditions of the running quantities (PDFs, α_s , and masses):
 - needed by the FONLL scheme as a VFNS (not needed in the FFNS).
- All the formalism is implemented in **APFEL** \Rightarrow **available in xFitter**: ready to attempt a determination of $m_c(m_c)$

Analysis Settings

• The **dataset**:

- combined HERA 1+2 charm production cross sections,
- combined HERA 1+2 inclusive DIS cross sections,
- cut on data with $Q^2 < Q_{min}^2 = 3.5 \text{ GeV}^2$.

• The **parametrization**:

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25}, \quad B_{\bar{U}} = B_{\bar{D}}, \\ xu_v(x) &= xu(x) - x\overline{u}(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2), \qquad A_{\bar{U}} = A_{\bar{D}} (1-f_s) \\ xd_v(x) &= xd(x) - x\overline{d}(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= x\overline{u}(x) \qquad = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x), \\ x\bar{D}(x) &= x\overline{d}(x) + x\overline{s}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

• and its variations:

- strangeness fraction: $f_s = 0.4 \pm 0.1$,
- initial scale: $Q_0^2 = 1 1.5 \text{ GeV}^2$ (bound to be below te charm mass),
- functional form variation: inclusion of the D_{uv} linear term in $xu_v(x)$.

Analysis Settings

• The **model (QCD) settings** and their variations:

• strong coupling: $\alpha_s(M_Z) = 0.118 \pm 0.0015$,

- all heavy quark masses are defined in the $\overline{\text{MS}}$ renormalization scheme:
 - charm mass: $m_c(m_c)$ scan in the range [1.10 1.60] GeV with steps of 0.05 GeV,
 - bottom mass: $m_b(m_b) = 4.18 \pm 0.25$ GeV (PDG value and conservative variation),
 - top mass: $m_t(m_t) = 160 \text{ GeV}$ (PDG value and no variation).

• The **theory settings** and their variations:

- central scales: $\mu_R^2 = \mu_F^2 = Q^2$,
- scale variations: $\mu_R^2 = \mu_F^2 = Q^2 / 2$ and $\mu_R^2 = \mu_F^2 = 2 Q^{2}$,
- variation of the damping factor (only for FONLL).

Analysis Settings

• Main result based on the **FONLL-C scheme**:

- FONLL-C is nominally a NNLO scheme but accurate at NLO in the massive sector.
- Consequently, the **accuracy** of our determination of $m_c(m_c)$ is formally **NLO**.
- model, parametrization, and theory uncertainties are estimated by applying the variations described in the previous slides,
- the impact of the so-called FONLL "**damping factor**", which is an artifice to suppress unwanted higher-order terms in the low-energy region, is also considered as a source of the theoretical uncertainty.
- The FONLL determination is accompanied by a determination in the **FFNS at NLO**:
 - same model, parametrization, and theory variations,
 - complements previous determinations.

Results: Central Value

- The **best fit** values of $m_c(m_c)$ is determined as the minimum of a parabolic fit to the global χ^2 vs. $m_c(m_c)$,
- the 1- σ experimental uncertainty is determined as $\Delta \chi^2 = 1$ variation around the minimum.

Results: Param Uncertainty

- The parametric uncertainty is estimated varying:
 - the initial scale Q_0^2 from 1 to 1.5 GeV²,
 - including the linear proportional D_{uv} into the $xu_v(x)$ distribution (variation with the largest impact).

Results: Model Uncertainty

• The model uncertainty is estimated varying:

• $\alpha_s(M_Z)$ by 0.0015 around 0.118,

• f_s by 0.1 around 0.4.

• $m_b(m_b)$ by 0.25 GeV around 4.18 GeV,

Results: Theory Uncertainty

• The theoretical uncertainty is estimated varying:

- μ_R^2 and μ_F^2 by a factor two up and down around $\mu_R^2 = \mu_F^2 = Q^2$ (only in the heavy quark contributions),
- the suppression power of the FONLL damping factor from 2 to 1 and 4.

Results: Final Combinations

• FONLL-C:

$$m_c(m_c) = 1.335 \pm 0.043(\exp)^{+0.019}_{-0.000}(\operatorname{param})^{+0.011}_{-0.008}(\operatorname{mod})^{+0.033}_{-0.008}(\operatorname{th}) \text{ GeV}$$

• FF@NLO (same variations as FONLL):

$$m_c(m_c) = 1.318 \pm 0.054(\exp)^{+0.011}_{-0.010}(\operatorname{param})^{+0.015}_{-0.019}(\operatorname{mod})^{+0.045}_{-0.004}(\operatorname{th}) \text{GeV}$$

Results: Comparisons

- Our determinations are **compatible** with each other.
- Compatible with the **PDG world average**.
- Competitive uncertainty.
- General agreement with most of the **past** determinations.
- Differently from the other determinations, ours tend to be **above the PDG value**:
 - main difference: fit to the recent combined HERA 1+2 inclusive cross sections.
 - Is there any correlation?

 $m_c(m_c)$ [GeV]

Results: Q_{min}² Depender ce Global dataset, FONLL-C

• Criteria to choose the value of Q_{min}^2 :

as **high sensitivity** to $m_c(m_c)$ as possible: $\underbrace{\overset{>}{\underline{\vartheta}}}_{\underline{\vartheta}}$

small experimental uncertainty on $m_c(m_c)$.

Good description of the full dataset:

- low value of the χ^2 .
- Fit as many points as possible: 3)
 - Q_{min}^2 reasonably small.
- This suggests $Q_{min}^2 \in [3.5:5]$ GeV²:
- Q_{min²} reasonably small. suggests $Q_{min^2} \in [3.5:5]$ GeV²: Q_{min²} = 3.5 GeV² is a conservative choice with the second state of th in line with previous studies.

Results: Qmin² Dependence Global dataset, FONLL-C

Conclusions and Summary

- First **direct** determination of the $\overline{\text{MS}}$ charm mass $m_c(m_c)$ from a fit to inclusive and charm production DIS data from HERA based on the **FONLL scheme**:
 - accompanied by the formulation of the FONLL scheme in terms of the $\overline{\rm MS}$ masses.
- Solid and competitive determination **complementary** and in **good agreement** with the previous determinations based on the FFNS:
 - our study also provides FFNS determination with a full characterization of the uncertainties which is in good agreement with the FONLL value.
- Ours is the first determination of m_c(m_c) that uses the recent combined HERA 1+2 inclusive cross sections:
 - these new measurements seem to prefer a value of $m_c(m_c)$ larger than the charm cross sections **pulling up** the global value.

Backup Slides

Results: PDFs

• Comparison with other PDF sets based on a GM-VFNS:

• A detailed study at the level of PDFs is beyond the scope of this work.