

G. Borissov, Lancaster University, UK On behalf of ATLAS Collaboration

> DIS-2016 conference Hamburg, 12 April 2016

B physics in ATLAS

- ATLAS collaboration is very active in *B* physics
- In this talk, some of our recent results are presented
 - Study of CP violation in $B_s \rightarrow J/\psi \phi$ decay
 - Measurement of the width difference of B^0 meson

CP-violation in $B_s \rightarrow J/\psi \phi$ decay

• Interference of B_s decays with and without mixing to the final state accessible to both B_s and \overline{B}_s results in CP violation

CP violation in
$$B_s \rightarrow J/\psi \phi$$
 decay

- CP asymmetry in $B_s \rightarrow J/\psi \varphi$ decay is described by the phase $\phi^{J/\psi \varphi}$
- Within the SM $\phi^{I/\psi\varphi}$ is related with the angle β_s of the (*bs*) unitarity triangle:

$$\phi^{J/\psi\varphi,SM} = -2\beta_s = 2\arg\left(-\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*}\right) = -0.0363^{+0.0016}_{-0.0015}$$

$$V_{ub}V_{us}^* \sim \lambda^4 \underbrace{V_{tb}V_{ts}^* \sim \lambda^2}_{V_{cb}V_{cs}^* \sim \lambda^2} \uparrow$$

• $\phi^{I/\psi\varphi}$ can be modified by the new physics:

$$\phi^{J/\psi\varphi} = \phi^{J/\psi\varphi,SM} + \phi^{NP}_{s}$$

- This possibility explains elevated interest to this decay mode
- The precise measurements of $\phi^{I/\psi\phi}$ by the LHC experiments considerably reduced the possible amount of new physics contribution
- Still, the precise measurement of $\phi^{I/\psi\varphi}$ is essential to test the SM and to study the possible new physics extensions 12 April 2016 G. Borissov, Mixing and CP violation of B0 and Bs 4

Analysis of ATLAS data

- Analysis of 2011 ($\sqrt{s} = 7 \text{ TeV}$) and 2012 ($\sqrt{s} = 8 \text{ TeV}$) data samples is completed
- Results obtained with 2011 data is published
 - Phys. Rev. D90 (2014), 052007

 $\phi^{J/\psi\phi} = 0.12 \pm 0.25 \,(\text{stat}) \pm 0.05 \,(\text{syst})$

 $\Delta \Gamma_s = 0.053 \pm 0.021 \, (\text{stat}) \pm 0.010 \, (\text{syst})$

- New result based on 2012 data is released recently
 - arXiv: 1601.03297
 - It is discussed in detail in this talk

Analysis of 2012 data

- Events are selected using dimuon triggers
 - Muon p_T threshold is either 4 or 6 GeV
- Lifetime-unbiased reconstruction
- In total 376K event candidates are selected with $5.15 < m(J/\psi\varphi) < 5.65$ GeV
 - About 75K signal events
 - About 3.5 times more signal events than in 2011 analysis

Results

• From the likelihood fit we obtain:

 $\phi^{J/\psi\phi} = -0.123 \pm 0.089 \,(\text{stat}) \pm 0.041 \,(\text{syst})$ $\Delta \Gamma_s = 0.096 \pm 0.013 \,(\text{stat}) \pm 0.007 \,(\text{syst})$

• Results of 2011 and 2012 are consistent

• Combination of 2011 and 2012 results gives:

 $\phi^{J/\psi\phi} = -0.098 \pm 0.084 \text{ (stat)} \pm 0.040 \text{ (syst)}$ $\Delta \Gamma_s = 0.083 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst)}$

• Result agrees well with the SM expectation

Comparison with other experiments

• Results of ATLAS are consistent with other measurements of CP violation in this B_s decay

Width difference of B_d

- $\Delta \Gamma_d$ is one of the parameters describing the time evolution of the B_d system
- It is reliably predicted in the Standard Model

 $\Delta \Gamma_d = (0.42 \pm 0.08) \times 10^{-2} \text{ (SM)}$

• Current experimental uncertainty is too large to allow a comparison with the SM prediction

 $\Delta \Gamma_d = (0.1 \pm 1.0) \times 10^{-2}$ (World Average)

• Additional measurements are required to constrain this quantity and verify the SM prediction

Measurement method

- $\Delta \Gamma_d$ is obtained from the ratio of the proper decay time distributions of $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$ decays
- Decay time distribution of $B^0 \rightarrow J/\psi K_s$ depends on $\Delta \Gamma_d$:

$$\Gamma[t, J/\psi K_S] \propto e^{-\Gamma_d t} \left[\cosh \frac{\Delta \Gamma_d t}{2} + \cos(2\beta) \sinh \frac{\Delta \Gamma_d t}{2} - A_P \sin(2\beta) \sin(\Delta m_d t) \right]$$

- t is the proper decay time of B^0 meson
- $-\beta$ is the angle of the unitarity triangle
- $-A_{\rm P}$ is the production asymmetry of B^0 meson
- Decay time distribution of $B^0 \rightarrow J/\psi K^{*0}$ is almost not sensitive to $\Delta \Gamma_d$:

$$\Gamma[t, J/\psi K^{*0}] \propto e^{-\Gamma_d t} \cosh \frac{\Delta \Gamma_d t}{2}$$

- Decays $B^0 \rightarrow J/\psi K^{*0}$ and $B^{\overline{0}} \rightarrow J/\psi K^{\overline{*}0}$ are added together

Measurement method

- Using the ratio of the distributions of the two decay modes helps to reduce the systematic uncertainties of the measurement
 - The same number of charged particles in these two decay modes
 - Both decay modes are triggered by the same di-muon triggers and the other particles from B^0 decay are not used in the trigger
 - The factor $e^{-\Gamma_d t}$ is cancelled in the ratio increasing the sensitivity to $\Delta \Gamma_d$

Essential ingredients of this measurement

- Measurement of the proper decay length (L_{prop}) distributions of $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$ decays
 - Proper decay length is equivalent to proper decay time: $L_{prop} = c t$
 - It is a three-dimensional decay length divided by γ -factor of B^0 meson
- Ratio of reconstruction efficiencies of $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$ decays
- Production asymmetry of B^0 meson

Proper decay length distributions

- The number of decays $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$ is measured in 10 intervals of the B^0 proper decay length (L_{prop})
 - The total range of L_{prop} is between -0.3 and 6 mm
 - The number of decay is obtained from the fit of the mass distributions
- Number of $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$ decays measured in each interval is used to obtain the ratio of the L_{prop} distributions of the two decay modes

Example of the mass fit for $0 < L_{prop} < 0.3$ mm

B⁰ production asymmetry

- B^0 production asymmetry (A_P) is expected to be ~1%
- It is measured using the dependence of the charge asymmetry of $B^0 \rightarrow J/\psi K^{*0}$ decay A_{obs} on L_{prop}
- This asymmetry should oscillate if there is a difference in the production rate between B^0 and \overline{B}^0
- ATLAS result:

 $A_{\rm P} = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$

Measurement of $\Delta \Gamma_d$

- 0.6 B Ratio of L_{prop} distributions Jata 0.55 Fit √s= 8 TeV ±1σ band corrected by the ratio of 0.5 $L dt = 20.3 \text{ fb}^{-1}$ $\pm 2\sigma$ band reconstruction efficiencies 0.45 is fitted to extract $\Delta \Gamma_d$ 0.4 0.35 Normalisation of the ratio is 0.3 arbitrary 0.25 **ATLAS** Preliminary **Obtained result:** 0.2 2 3 4 5 $\frac{\Delta \Gamma_d}{\Gamma_d} = (-2.8 \pm 2.2(\text{stat}) \pm 1.7(\text{syst})) \times 10^{-2} \quad (2011)$ [mm] $\frac{\Delta \Gamma_d}{\Gamma} = (+0.8 \pm 1.3(\text{stat}) \pm 0.8(\text{syst})) \times 10^{-2} \quad (2012)$
- Combination of these two measurements gives:

$$\frac{\Delta \Gamma_d}{\Gamma_d} = (-0.1 \pm 1.1(\text{stat}) \pm 0.9(\text{syst})) \times 10^{-2}$$

G. Borissov, Mixing and CP violation of B0 and Bs

Comparison with other experiments

• ATLAS result is consistent with other measurements of $\Delta \Gamma_d$

 $\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 \pm 0.9) \times 10^{-2} \text{ (ATLAS)}$

 $\Delta \Gamma_{d} / \Gamma_{d} = (-4.4 \pm 2.5 \pm 1.1) \times 10^{-2} \text{ (LHCb)}$ $\Delta \Gamma_{d} / \Gamma_{d} = (+1.7 \pm 1.8 \pm 1.1) \times 10^{-2} \text{ (Belle)}$ $\Delta \Gamma_{d} / \Gamma_{d} = (+0.8 \pm 3.7 \pm 1.8) \times 10^{-2} \text{ (Babar)}$

- Currently, it is the most precise single measurement
- It is consistent with the SM prediction

 $\Delta \Gamma_d = (0.42 \pm 0.08) \times 10^{-2} \text{ (SM)}$

Conclusions

• Analysis of Run I ATLAS data reveals no anomaly in $B_s \rightarrow J/\psi \varphi$ decay

 $\phi^{J/\psi\phi} = -0.098 \pm 0.084 \text{ (stat)} \pm 0.040 \text{ (syst)}$ $\Delta \Gamma_s = 0.083 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst)}$

• ATLAS obtained the most precise single measurement of $\Delta \Gamma_d$:

$$\frac{\Delta \Gamma_d}{\Gamma_d} = (-0.1 \pm 1.1(\text{stat}) \pm 0.9(\text{syst})) \times 10^{-2}$$

• Significant increase in statistics is expected in Rin II, and the precision of these measurements will be considerably improved

Backup slides

Neutral B_q system

• Dynamics of B_q meson (q = d, s) is described by 5 parameters:

$$m_q, \Gamma_q, \Delta m_q, \Delta \Gamma_q, \phi_q^{12}$$

- Δm_q and $\Delta \Gamma_q$ are the mass and width difference of two physical states B_q^{H} (heavy) and B_q^{L} (light)
 - With these definitions both Δm_q and $\Delta \Gamma_q$ positive in the SM
- $m_q^{\ 12}$ and $\Gamma_q^{\ 12}$ are non-diagonal elements of the (m-*i* $\Gamma/2$) matrix

$$\begin{split} \left\|\mathbf{m}_{q}\right\| &= \begin{bmatrix} m_{q} & m_{q}^{12} \\ (m_{q}^{12})^{*} & m_{q} \end{bmatrix} - \frac{i}{2} \begin{bmatrix} \Gamma_{q} & \Gamma_{q}^{12} \\ (\Gamma_{q}^{12})^{*} & \Gamma_{q} \end{bmatrix} \\ \Delta m_{q} &= m_{q,H} - m_{q,L} \approx 2 \left| m_{q}^{12} \right| \\ \Delta \Gamma_{q} &= \Gamma_{q,L} - \Gamma_{q,H} \approx 2 \left| \Gamma_{q}^{12} \right| \cos \phi_{q}^{12} \\ \phi_{q}^{12} &= \arg \left(-\frac{m_{q}^{12}}{\Gamma_{q}^{12}} \right) \end{split}$$

AT LAS

Initial state flavour tagging

- Tagging of the initial flavour $(B_s \text{ or } \overline{B_s})$ is essential for CP violation study
 - We need to measure the difference between

$$\Gamma(B_s(\to \overline{B}_s) \to f_{CP}) \text{ and } \Gamma(\overline{B}_s(\to B_s) \to f_{CP})$$

- In ATLAS the initial B_s flavour is determined by the flavour of the opposite *B* meson \overline{B} A B
- Several tagging methods are used
 - Muon or electron from the opposite side
 - Jet charge of the jet with maximal b-tagging value
 - Tracks forming B_s candidate are excluded from the jet charge measurement
- Achieved tagging power is (1.49±0.02)%
 - Tagging power shows the effective fraction of statistics with 100% correct initial flavour measurement

20

- For muon the sum is taken over tracks in $\Delta R < 0.5$ cone around the muon
- For jet the sum is taken over all tracks in the jet

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Combined μ	4.12 ± 0.02	47.4 ± 0.2	0.92 ± 0.02
Electron	1.19 ± 0.01	49.2 ± 0.3	0.29 ± 0.01
Segment-tagged μ	1.20 ± 0.01	28.6 ± 0.2	0.10 ± 0.01
Jet-charge	13.15 ± 0.03	11.85 ± 0.03	0.19 ± 0.01
Total	19.66 ± 0.04	27.56 ± 0.06	1.49 ± 0.02

Unbinned maximum likelihood fit

LS The properties of $B_s \rightarrow J/\psi \varphi$ decay are obtained from the unbinned maximum likelihood fit which includes:

- Mass of $J/\psi \varphi$ system and its uncertainty
- $p_T \text{ of } B_s \text{ candidate}$
- Proper decay length and its uncertainty
- Angles describing the kinematics of B_s decay
- Flavour tagging
- Good quality of the fit is confirmed by the projection of the fit on all variables

Ratio of reconstruction efficiencies

- The ratio of the L_{prop} distributions should be corrected by the ratio of the reconstruction efficiencies of the $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$ decays
- This ratio is obtained from MC
- In this ratio, many inefficiencies of two channels cancel
- The deviation of this ratio from the average value does not exceed 5% for $L_{\rm prop}$ < 2 mm

Ratio of reconstruction efficiencies of $B^0 \rightarrow J/\psi \ K_s$ and $B^0 \rightarrow J/\psi \ K^{*0}$ decays Normalisation is arbitrary

Systematic uncertainties

- Systematic uncertainty has a large contribution from the available number of MC events
- Can be improved in the future

Source	$\delta(\Delta\Gamma_d/\Gamma_d), 2011$	$\delta(\Delta\Gamma_d/\Gamma_d), 2012$
K_S decay length	0.21×10^{-2}	0.16×10^{-2}
K_S pseudorapidity	0.14×10^{-2}	0.01×10^{-2}
$B^0 \rightarrow J/\psi K_S$ mass range	0.47×10^{-2}	0.59×10^{-2}
$B^0 \rightarrow J/\psi K^{*0}$ mass range	0.30×10^{-2}	0.15×10^{-2}
Background description	0.16×10^{-2}	0.09×10^{-2}
$B_s^0 \to J/\psi K_S$ contribution	0.11×10^{-2}	0.08×10^{-2}
$L^B_{\rm prop}$ resolution	0.29×10^{-2}	0.29×10^{-2}
Fit bias (Toy MC)	0.07×10^{-2}	0.07×10^{-2}
B^0 production asymmetry	0.01×10^{-2}	0.01×10^{-2}
MC sample	1.54×10^{-2}	0.45×10^{-2}
Total uncertainty	1.69×10^{-2}	0.84×10^{-2}