Vector boson and Charmonium production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

Markus K. Köhler on behalf of the ATLAS Collaboration

Weizmann Institute of Science

April 13th, 2016

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

11-15 April 2016, DESY, Hamburg

Heavy-ion collisions

Vector bosons and Charmonia in heavy-ion collisions

- Electroweak (EW) bosons, as well as heavy-flavor quarks, are produced in early stages of a heavy-ion collision
- ► Leptonic decay products do not interact strongly → Excellent messengers from a strongly interacting medium

EW bosons

- Assumption of the binary nucleon-nucleon collision scaling
- Standard candles for energyloss in QCD medium
- Effects of nuclear modifications on Parton Distribution Function (PDF)?

Charmonia

 Quarkonium suppression due to color screening in QGP

 Necessary prerequisite to understand cold nuclear matter effects in p+Pb

ATLAS detector

Data sets

- *pp*, 2.76 TeV
 ∫ ℒdt = 4.0 pb⁻¹
- ▶ $p+\mathsf{Pb}$, 5.02 TeV $\int \mathscr{L} dt = 28.1 \text{ nb}^{-1}$
- ▶ Pb+Pb, 2.76 TeV ∫ ℒdt = 0.14 nb⁻¹

FCal $E_T \rightarrow$ Centrality

Sub-detectors

$ \eta < 2.5$
$ \eta < 2.7$
$ \eta < 3.2$
$ \eta < 4.9$

Binary nucleon-nucleon collision scaling in Pb+Pb

Phys. Rev. Lett. 110,022301 (2013) and EPJ C (2015) 75:23

 EW boson yields consistent with a superposition of nucleon-nucleon collisions

W boson production in Pb+Pb collisions EPJ C (2015) 75:23

- Measurement well described by the superposition of nucleon-nucleon collisions
- ▶ Lepton charge asymmetry $A_{\ell} = \frac{N_{W^+} N_{W^-}}{N_{W^+} + N_{W^-}}$
- Measurement cannot distinguish between PDFs that incorporate nuclear effects and those that do not

Sensitivity of PDFs to different collision systems

Paukkunen and Salgados, JHEP 1103:071,2011

Pb+Pb

p+Pb

 Rapidity asymmetries in p+Pb collisions advantageous over symmetric Pb+Pb collision geometry

W and Z cross section in p+Pb collisions Phys. Rev. C 92, 044915 (2015) and ATLAS-CONF-2015-056

- ▶ Small excess observed in Pb-going side for Z and W^-
- Nuclear modification scenario favored by Z measurement
- Nuclear modifications do not reproduce the magnitude

Centrality in p+Pb collisions

arXiv:1508.00848 [hep-ex], accepted by EPJC

 Measurement of ∑ E_T in Forward Calorimeter in Pb-going direction ⇒ Centrality

W bosons in p+Pb collisions

ATLAS-CONF-2015-056

- ▶ W production vs η_{lab}^{μ} for three centrality bins normalized to number binary collisions and minimum-bias events
- Centrality dependence of nuclear modifications ?

Z bosons in p+Pb collisions

Phys. Rev. C 92, 044915 (2015)

- Z production vs y* for three centrality bins normalized to number binary collisions and minimum-bias events
- Centrality dependence of nuclear modifications ?

J/ψ forward-backward production ratio

Phys. Rev. C 92, 034904 (2015)

• Forward-Backward ratio $R_{\rm FB}$

 $R_{\mathrm{FB}}(p_{\mathsf{T}},y^*) = \frac{\mathsf{d}^2 \sigma(p_{\mathsf{T}},y^*>0)/\mathsf{d} p_{\mathsf{T}} \mathsf{d} y^*}{\mathsf{d}^2 \sigma(p_{\mathsf{T}},y^*<0)/\mathsf{d} p_{\mathsf{T}} \mathsf{d} y^*}$

- ► In the ratio R_{FB} many systematic uncertainties cancel
- ► Forward-backward ratio of prompt J/ψ is compatible with both EPS09 models

Nuclear modification of (non-)prompt $\psi(nS)$ ATLAS-CONF-2015-023

Markus K. Köhler, DIS 2016

Run: 287038 Event: 237848612 2015-12-01 02:47:45 CEST

Pb+Pb, $\sqrt{s_{NN}} = 5.02$ TeV Z+jet candidate FCal $\Sigma E_T = 2.40$ TeV

ATLAS collected more than 650 μ b⁻¹ of Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in November-December 2015

Markus K. Köhler, DIS 2016

Outlook for Run2 HION-2015-01

Summary

- The ATLAS experiment produced a variety of results for electroweak bosons and charmonia in p+Pb and Pb+Pb collisions in Run1
 - Overall good description of data by models
 - ► In Pb+Pb system, W and Z production consistent with binary nucleon-nucleon collision scaling
 - EW boson measurements in p+Pb collisions can be used to differentiate between various models
 - ► Z measurements in p+Pb collisions are best described by PDFs with nuclear modifications
 - ► Charmonia results in p+Pb collisions are consistent with EPS09 for R_{FB} and do not show a significant change in R_{pPb} in the measured ranges of p_T or |y^{*}|
- ▶ Many more results can be expected for pp and Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV taken in 2015

backup

Probing (n)PDFs with photons in Pb+Pb collisions Phys. Rev. C 93 (2016) 034914

- ► Data to NLO pQCD ratio → JETPHOX predictions with and without nuclear modifications
- ► Forward-central ratio → Significant reduction of systematic uncertainties

 $R_{\mathrm{FC}\eta} = \frac{\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}(1.52 < |\eta| < 2.37)}{\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}(|\eta| < 1.37)}$

Isolated prompt photons

Photon and Z spectra in Pb+Pb collisions Phys. Rev. C 93 (2016) 034914 and Phys. Rev. Lett. 110,022301 (2013)

Z bosons in Pb+Pb collisions

Phys. Rev. Lett. 110,022301 (2013)

Good agreement between models and data

Details on centrality in p+Pb collisions

arXiv:1508.00848 [hep-ex], accepted by EPJC

- ► Transverse energy deposited in FCal in Pb-going direction ∑ E^{Pb}_T
- ► Use Glauber or Glauber-Gribov Color Fluctuation (GGCF) models to map measurement with geometric quantities (N_{part}) or (N_{coll})
- Magnitude of event-by-event fluctuations is given by ω_σ

Centrality bias corrections in p+Pb collisions arXiv:1412.0976 [nucl-ex] and Phys. Rev. C 92, 044915 (2015)

Centrality bias: Increase of Underlying event in hard scatterings

Potential partonic in-medium effects

- Gluon saturation
- Gluon shadowing
- Partonic energy-loss

Example EPS09 Eskola, Paukkunen, Salgado JHEP 0904:065,2009

- Medium modified PDFs
- NLO, constrained by DIS on nuclei, Drell-Yan in p+A, incl. pion production in pp and d+Au

- Modified parton distributions
- Modified fragmentation function

 $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\text{CTEQ6.1M}}(x,Q^2)$

Potential neutron skin measurements Paukkunen, Phys. Lett. B 745 (2015) 73

- ► W[±] production sensitive to isospin of colliding quarks
- Neutron skin would have measurable impact on W production in peripheral collisions

Z bosons vs charged particles in p+Pb collisions Phys. Rev. C 92, 044915 (2015)

 Ratio of multiplicities of Z bosons and inclusive charged particles

Z bosons in p+Pb collisions

Phys. Rev. C 92, 044915 (2015)

Binary collision scaling in p+Pb collisions

Phys. Rev. C 92, 044915 (2015) and ATLAS-CONF-2015-056

 Weak bosons do (or do not) scale – depending on the model used for p+Pb centrality calculation

Prompt and non-prompt charmonia in p+Pb ATLAS-CONF-2015-023

Proton-proton reference for $\psi(nS)$ measurement $_{\rm ATLAS-CONF-2015-023}$

