Search for heavy Higgses and di-Higgs resonances in fermionic decay modes with ATLAS

Dirk Duschinger On behalf of the ATLAS collaboration 04/12/16

TECHNISCHE

UNIVERSITÄT DRESDEN

Physik bei höchsten Energien mit dem ATLAS-Experiment am LHC

Introduction

Heavy BSM Higgs searches in 2HDM:

- 5 physical Higgs bosons: h, H, A, H^{+/-}
- Ratio of vacuum expectation values: tan(β)
- neutral CP-even states are mixed with mixing angle: α
- Type I: Φ2 couples to fermions, Φ1 to gauge bosons → "fermiophobic" in absence of mixing
- Type II: Φ1 couples to downtype fermions, Φ2 to up-type fermions

Di-Higgs searches:

- Resonant production: 2HDM, Randall-Sundrum
- Non-resonant production

Searches:

- Η → ττ
- $H^{+/-} \rightarrow \tau \nu$
- $A \rightarrow ZH \rightarrow II/\nu\nu bb$
- Di-Higgs with 4 b-quark final state

$H^0 \rightarrow \tau \tau$ – Analysis strategy

Select two back-to-back tau decays of opposite charge

	Muons	Electrons	Trigger	1. Object	2. Object
T _{had} T _{had}	0	0	Single tau	p _⊤ > 135 GeV Medium ID	p _⊤ > 55 GeV Loose ID
τ _μ τ _{had}	1	0	Single muon	p _⊤ > 30 GeV Medium ID	p _⊤ > 20 GeV Medium ID
τ _e τ _{had}	0	1	Single electron	p _⊤ > 30 GeV Medium ID	p _⊤ > 20 GeV Medium ID

$H^0 \rightarrow \tau \tau$ – Signal Region

- $\tau_{had} \tau_{had}$ channel:
 - OCD background estimated from data
 - Simulated W/Z+jets, top and diboson backgrounds with data driven corrections for misidentified τ_{had}
- τ_{lep}τ_{had} channel:
 - Backgrounds with correctly identified lepton and τ_{had} estimated from simulation
 - Other background estimated from data
- Total transverse mass distribution

 $\tau_e \tau_{\text{had}}$ Channel

 $Z \rightarrow \tau \tau + \text{jets}$

 $Z \rightarrow \ell \ell + \text{jets}$

Total prediction

 $\tau_{\mu}\tau_{\rm had}$ Channel

 $Z \rightarrow \tau \tau + \text{jets}$

Fake τ_{had}

Diboson

Top

Data

Yield

 5650 ± 750

 9640 ± 490

 1390 ± 830 543 ± 86

 102 ± 22

 17300 ± 1300

17480

Yield

 6720 ± 980

 5840 ± 420

 710 ± 92

 552 ± 80

 105 ± 22

13374

Yield

 52 ± 18

 175 ± 13

 23.7 ± 9.6

 11.6 ± 5.0

 4.5 ± 2.4

 268 ± 25

284

4/15

$H^{0} \rightarrow \tau\tau - Exclusion \ Limits$

- Background prediction compatible with observation
- 95% CL limits set on various scenarios hMSSM, m_h^{mod+/-}, m_h^{max}, light stop, light stau, tauphobic

$H^{+/-} \rightarrow \tau \nu$ – Analysis strategy

Topology: hadronic top decay $t \rightarrow jj+b$ and $H^{+/-} \rightarrow \tau_{had} \nu$ **Selection:**

- High missing E_{T} trigger (> 70 GeV)
- Missing $E_T > 150 \text{ GeV}$
- Tau transverse momentum $p_T > 40$ GeV, medium ID
- At least 3 additional jets with $p_{\tau} > 25 \text{ GeV}$
 - One of them is b-tagged

•
$$m_T > 50$$
 GeV, with $m_T = \sqrt{2p_T^{\tau} E_T^{miss}(1 - \cos \Delta \phi_{\tau,miss})}$

$H^{+/-} \rightarrow \tau \nu$ – Signal Region

- Jet to τ_{had} fakes estimated from data using fake factors
- Other backgrounds estimated from simulation
 - Additional data driven corrections for fake rate of $e \rightarrow \tau_{had}$
 - W+jets normalization corrected from W → τν control region

$H^{+/-} \rightarrow \tau \nu$ – Exclusion Limits

- Largest impact on exclusion limit from:
 - tau energy scale
 - tī modeling
 - QCD estimation

- Background prediction compatible with observation
- Supersede run 1 results

ATLAS-CONF-2016-015

$A \rightarrow ZH \rightarrow II/\nu\nu \ bb \ - \ Analysis \ Strategy$

- Categories:
 - **Resolved:** p_T of Z candidate < 500 GeV

- **Boosted:** p_T of Z candidate ≥ 500 GeV

 $II/vv \leftarrow Z \leftarrow A \rightarrow h$

Variable	$\text{Low-}p_{\text{T}}^{Z}$	High- $p_{\rm T}^Z$				
Common selection						
$p_{\rm T}^Z \; [{\rm GeV}]$	<500	≥ 500				
$N_{b- ext{tag jet}}$	$1,\!2$	1,2				
$N_{\mathrm{small}-R}$ jet	≥ 2	≥ 0				
$N_{\text{large-}R \text{ jet}}$	≥ 0	≥ 1				
$m_{\rm dijet}$ or $m_{\rm jet}$ [GeV]	110-140	75 - 145				
0-lepton select	tion					
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	—				
$N_{jet} = 3(2)$ jet $r = 100$						
$\sum_{\mathbf{r}} p_{\mathbf{T}}^{\mathrm{gev}_i} \left[\mathrm{GeV} \right]$	$> 150 \ (120)^{(*)}$	—				
$p_{\mathrm{T}}^{i=1}$ [GeV]	> 30	> 30				
$\Delta \phi (ec{E}_{ ext{T}}^{ ext{miss}}, ec{p}_{ ext{T}}^{ ext{miss}})$	$<\pi/2$	$<\pi/2$				
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$	$> 2\pi/3$				
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small-}R \; \mathrm{jet})]$	$> \pi/9^{(*)}$	$> \pi/9^{(*)}$				
$\Delta \phi(j,j)$.	$< 7\pi/9$	_				
Number of hadronic taus	0	0				
Number of b -tag track-jets not		0				
associated to the leading large- R jet		0				
2-lepton selection						
$m_{ee} [{ m GeV}]$	70–110	70–110				
$m_{\mu\mu} [{ m GeV}]$	70-110	55 - 125				
$E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}} \left[\sqrt{{\rm GeV}} \right]$	< 3.5	_				

$A \rightarrow ZH \rightarrow II/\nu\nu \ bb \ - \ Signal \ Region$

- Primary backgrounds: W/Z+jets and $\ensuremath{t\bar{t}}$
- Diboson and single top at percent level
- Negligible QCD contributions

- Invariant mass for 2-lepton channel
- Transverse mass for 0-lepton channel

$$m_{\rm T}^{Zh} = \sqrt{(E_{\rm T}^{\,h} + E_{\rm T}^{\rm miss})^2 - (\vec{p}_{\rm T}^{\,h} + \vec{E}_{\rm T}^{\rm miss})^2},$$

$A \rightarrow ZH \rightarrow II/vv bb - Results$

- 95% CL limits on σ x BR
- Interpretation in context of type I and type II 2HDM

Pure gluon fusion production

Observed (CLs)

 $Z \rightarrow v \overline{v}$ expected (CLs)

 $Z \rightarrow II$ expected (CLs)

····· Expected (CLs)

± **1**σ $\pm 2\sigma$

ATLAS Preliminary

\s = 13 TeV, Ldt = 3.2 fb

 $A \rightarrow Zh \rightarrow Zbb$

10

04/12/16

$hh \rightarrow b\overline{b}b\overline{b} - Analysis \ Strategy$

• Non-resonant di-Higgs production similar to resolved resonant category

$hh \rightarrow b\overline{b}b\overline{b}$

- Multijet estimated from data
- tt shape estimated from simulation, normalization estimated from data
- Z+jets estimated from simulation (contributes less than 1%)
- Largest systematic uncertainties due to b-tagging efficiency and jet energy/mass scale/resolution

Events / 50 GeV		ATLAS Preliminary s=13 TeV, 3.2 fb ⁻¹ signal Region, Resolved ↓ Data Multijet tī Syst+Stat Uncertainty G*(800) k/M _{Pl} = 1.0
Data / Da	500 800 1	000 1200 1400 m _{4j} [GeV]
Events / 50 GeV 20 10 10		ATLAS Preliminary s=13 TeV, 3.2 fb ⁻¹ signal Region, Boosted 3-tag ↓ Data Multijet tī Syst+Stat Uncertainty G*(1800) k/Mp _I = 1.0, x 50
Data / Bkgd 7 8 009 008 009	1000 1200 1400 160	0 1800 2000 2200 2400 260 m _{2,J} [GeV]
Sign	al Region (3-tag)	Signal Region (4-tag)
	235 ± 14	13.5 ± 2.4

Sample	Signal Region Yield
Multijet	43.3 ± 2.3
$tar{t}$	4.3 ± 3.0
Z+jets	-
Total	47.6 ± 3.8
Data	46
SM hh	0.25 ± 0.07
$G_{\rm KK}^*$ (800 GeV), $k/\bar{M}_{\rm Pl} = 1$	5.7 ± 1.5

		2J L J
Sample	Signal Region (3-tag)	Signal Region (4-tag)
Multijet	235 ± 14	13.5 ± 2.4
$tar{t}$	48 ± 22	1.2 ± 1.0
Z + jets	2.0 ± 2.2	-
Total	285 ± 19	14.6 ± 2.4
Data	316	20
$G_{\rm KK}^*$ (1000 GeV), $k/\bar{M}_{\rm Pl} = 1$	3.4 ± 0.9	2.9 ± 1.1

04/12/16

$H \rightarrow hh \rightarrow b\overline{b}b\overline{b} - Results$

- Prediction and observation are in agreement
- No significant local excess
- Resolved category: largest deviation at 900 GeV \rightarrow less than 2σ
- Boosted category: largest deviation at 1.7 TeV \rightarrow less than 2 σ for $G^*_{\rm KK}$ and $k/\overline{M}_{\rm Pl}$ = 1
- Non-resonant di-Higgs: $\sigma(pp \rightarrow hh \rightarrow b\bar{b}b\bar{b}) < 1.22 \text{ pb}$ compared to SM prediction: $\sigma(pp \rightarrow hh \rightarrow b\bar{b}b\bar{b}) = 12.9^{+1.5}_{-1.6} \text{ fb}$
- 95% CL upper limits on G^*_{KK} and $k/\overline{M}_{Pl} = 1$ or 2 and narrow width H

Dirk Duschinger – dirk.duschinger@cern.ch

Summary

- Presented first 13 TeV results for new physics introducing heavy Higgses and di-Higgs resonances
- No significant excess above the SM prediction observed
- Looking forward to 2016 data taking

BACKUP

$H \to \tau\tau - lephad \ channel$

 After Δφ cut but before m_T cut After full selection

$\textbf{H} \rightarrow \textbf{\tau} \textbf{\tau} \textbf{-} \textbf{hadhad channel}$

$H \to \tau\tau \text{ - } Total \ Transverse \ Mass$

04/12/16

$H \to \tau\tau - Limits$

04/12/16

Dirk Duschinger – dirk.duschinger@cern.ch

20/15

$H \to \tau\tau - Limits$

$H \to \tau\tau - Limits$

Lowest excluded values of tan β for different masses of the MSSM CP-odd Higgs boson, m_A, for the m_h^{mod+} scenario

$m_A [{\rm GeV}]$	observed	expected	$+2\sigma$	$+1\sigma$	-1σ	-2σ
			[pb]			
200	10	11	15	13	9.1	7.9
300	16	15	22	18	13	12
400	22	19	28	23	17	15
500	23	23	33	28	21	19
600	27	27	38	32	24	22
700	31	31	45	37	28	25
800	34	37	52	43	33	29
1000	45	49	> 60	59	43	39
1200	> 60	> 60	> 60	> 60	60	53

$H^{+/-} \rightarrow \tau \nu$ – Fake Factors

- control region populated primarily with misidentified τ had-vis candidates:
 - same requirements as for the signal region, except: missing E_{T} < 80 GeV, no b-tagged jets
- FF is defined as the number of misidentified medium $\tau_{had-vis}$ candidates over number of misidentified not medium but loose $\tau_{had-vis}$ candidates
- FFs are parameterised in: $\tau \, p_\tau,$ number of charged and neutral pions, b-tagging score
- threshold on the b-tagging score of the τ had-vis candidate is optimized to keep sufficient statistics in each of the two bins, below and above the threshold.

$H^{+/-} \rightarrow \tau \nu$ – Control Regions

- $m_T < 100 \text{ GeV}$ (instead of $m_T > 50 \text{ GeV}$)
- $W \rightarrow \tau v$: no b-tagged jets
- tt
 : at least 2 b-tagged jets

$H^{+/\text{-}} \to \tau \nu \text{ - Systematics}$

Source of systematic	Impact on the expected limit (in $\%$)			
uncertainty	$m_{H^+} = 200 \ GeV$	$m_{H^+} = 1000 \ GeV$		
Experimental				
luminosity	2.0	1.1		
trigger	< 0.1	< 0.1		
$ au_{ m had-vis}$	2.7	1.1		
jet	0.4	< 0.1		
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.3	< 0.1		
Fake factors				
statistical limitation	4.5	0.7		
true τ_{had} contamination	< 0.1	< 0.1		
anti- $\tau_{had-vis}$ BDT score	0.2	0.6		
Signal and background models				
$t\bar{t}$ cross section	0.2	< 0.1		
$t\bar{t} \bmod ling$	7.5	1.0		
H^+ signal modelling	1.4	1.3		

 $H^{+/-} \rightarrow \tau \nu - Limits$

$H^{+/\text{-}} \to \tau \nu \text{ - Limits}$

H^+ mass [GeV]	Observed	Expected	-2σ	-1σ	+1 σ	$+2 \sigma$
200	1.9	1.5	0.79	1.1	2.1	3
225	1.3	1.3	0.67	0.9	1.8	2.5
250	0.8	0.95	0.51	0.69	1.4	1.9
275	0.57	0.69	0.37	0.49	0.98	1.4
300	0.41	0.52	0.28	0.37	0.74	1
350	0.34	0.33	0.18	0.24	0.48	0.69
400	0.2	0.2	0.11	0.15	0.3	0.43
500	0.093	0.11	0.056	0.076	0.15	0.22
600	0.05	0.071	0.038	0.051	0.1	0.15
700	0.033	0.052	0.028	0.038	0.076	0.11
800	0.024	0.039	0.021	0.028	0.058	0.084
900	0.021	0.036	0.019	0.026	0.052	0.076
1000	0.018	0.031	0.017	0.022	0.045	0.066
1200	0.016	0.027	0.015	0.02	0.04	0.059
1400	0.015	0.026	0.014	0.019	0.038	0.056
1600	0.015	0.025	0.014	0.018	0.037	0.055
1800	0.015	0.025	0.013	0.018	0.037	0.055
2000	0.015	0.025	0.013	0.018	0.037	0.055

$\textbf{A} \rightarrow \textbf{ZH} \rightarrow \textbf{II} / \nu \nu \ \textbf{bb} \ \textbf{-} \ \textbf{Selection}$

Variable	$\operatorname{Low-}p_{\mathrm{T}}^{Z}$	$\mathrm{High}\text{-}p_\mathrm{T}^Z$			
Common selection					
$p_{\mathrm{T}}^Z \; [\mathrm{GeV}]$	<500	≥ 500			
$\tilde{N_{b-\mathrm{tag}\ \mathrm{jet}}}$	$1,\!2$	1,2			
$N_{\mathrm{small-}R}$ jet	≥ 2	≥ 0			
$N_{ ext{large-}R ext{ jet}}$	≥ 0	≥ 1			
$m_{\rm dijet}$ or $m_{ m jet}$ [GeV]	110 - 140	75 - 145			
0-lepton select	ion				
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	> 150	_			
$N_{jet} = 3(2)$ jet $\ldots = 3$					
$\sum_{\mathbf{r}} p_{\mathbf{T}}^{\mathrm{Jev}_i} \left[\mathrm{GeV} \right]$	$> 150 \ (120)^{(*)}$	—			
$p_{\mathrm{T}}^{i=1}$ [GeV]	> 30	> 30			
$\Delta \phi (ec{E}_{ ext{T}}^{ ext{miss}}, ec{p}_{ ext{T}}^{ ext{miss}})$	$<\pi/2$	$<\pi/2$			
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$	$> 2\pi/3$			
$\min[\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small} {-} R \; \mathrm{jet})]$	$> \pi/9^{(*)}$	$> \pi/9^{(*)}$			
$\Delta \phi(j,j)$	$< 7\pi/9$	—			
Number of hadronic taus	0	0			
Number of <i>b</i> -tag track-jets not		0			
associated to the leading large- R jet	—	0			
2-lepton selection					
$m_{ee} [{\rm GeV}]$	70–110	70 - 110			
$m_{\mu\mu} [{ m GeV}]$	70 - 110	55 - 125			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [\sqrt{{ m GeV}}]$	< 3.5	_			

$\textbf{A} \rightarrow \textbf{ZH} \rightarrow \textbf{II} / \nu \nu \ \textbf{bb} \ \textbf{-} \ \textbf{Selection}$

$One \ b\text{-tag}$						
	0-leptons low- $p_{\rm T}^Z$	0-leptons high- $p_{\rm T}^Z$	2-leptons low- $p_{\rm T}^Z$	2-leptons high- $p_{\rm T}^Z$		
Z+l	55 ± 31	2.0 ± 1.0	118 ± 38	0.57 ± 0.28		
Z + (cl, bl)	518 ± 54	8.2 ± 1.8	1943 ± 65	3.18 ± 0.65		
Z + (bb, bc, cc)	82 ± 13	1.82 ± 0.35	391 ± 23	0.74 ± 0.13		
W + l	48 ± 22	—	—	_		
W + cl	111 ± 42	1.17 ± 0.45	0.67 ± 0.28	_		
W + (bb, bc, cc, bl)	185 ± 71	1.80 ± 0.63	10.1 ± 4.2	_		
$tar{t}$	1202 ± 77	2.05 ± 0.72	276 ± 22	_		
single top	99 ± 10	0.49 ± 0.11	15.3 ± 1.6	_		
diboson	27.2 ± 4.6	5.3 ± 1.0	26.3 ± 6.1	0.67 ± 0.32		
(W/Z)h	3.3 ± 1.6	0.16 ± 0.08	3.7 ± 1.8	0.04 ± 0.02		
total background	2332 ± 45	23.0 ± 2.6	2784 ± 47	5.2 ± 0.9		
expected $A \to Zh$ (gluon-fusion)	5.00 ± 0.41	_	1.73 ± 0.12	_		
expected $A \rightarrow Zh$ (b-quark-associated)	3.05 ± 0.26	—	1.01 ± 0.08	_		
data	2295	25	2769	8		
	Two	b-tags				
	0-leptons low- $p_{\rm T}^Z$	0-leptons high- $p_{\rm T}^Z$	2-leptons low- $p_{\rm T}^Z$	2-leptons high- $p_{\rm T}^Z$		
Z+l	0.13 ± 0.44	0.01 ± 0.01	_	_		
Z + (cl, bl)	4.7 ± 1.8	0.06 ± 0.03	9.6 ± 4.0	0.02 ± 0.01		
Z + (bb, bc, cc)	81 ± 13	0.75 ± 0.15	490 ± 22	0.36 ± 0.05		
W + l	—	0.02 ± 0.01	_	_		
W + cl	3.6 ± 2.1	0.04 ± 0.02	_	_		
W + (bb, bc, cc, bl)	37 ± 14	0.28 ± 0.09	0.42 ± 0.20	_		
$tar{t}$	392 ± 24	0.22 ± 0.11	284 ± 22	_		
single top	27.8 ± 2.9	_	6.39 ± 0.60	_		
diboson	6.1 ± 3.1	0.05 ± 0.03	0.57 ± 0.23	_		
(W/Z)h	5.4 ± 2.6	0.10 ± 0.05	7.6 ± 3.7	0.03 ± 0.01		
total background	557 ± 18	1.53 ± 0.25	799 ± 23	0.42 ± 0.05		
expected $A \to Zh$ (gluon-fusion)	9.21 ± 0.76	_	3.65 ± 0.29	_		
expected $A \rightarrow Zh$ (b-quark-associated)	5.85 ± 0.47	-	2.21 ± 0.17	-		
data	577	0	788	0		

$A \rightarrow ZH \rightarrow II/vv bb - SR + W/Z CR$

30/15

- Data

tt

 $A \rightarrow Zh (\sigma=113 \text{ fb})$ m_A=600 GeV Diboson

Single top W+(bb,bc,cc,bl) Z+(bl,cl)

m_{bb} [GeV]

→ Data A→ Zh (σ =113 fb) m_A=600 GeV Diboson

Z+(bl,cl) Z+(bb,bc,cc) Uncertainty

Pre-fit background

m_{bb} [GeV]

tt

Z+(bb,bc,cc) Uncertainty Pre-fit background

$A \rightarrow ZH \rightarrow II/vv bb - t\bar{t} CR$

$\textbf{A} \rightarrow \textbf{ZH} \rightarrow \textbf{II/vv bb} - \textbf{Mass Distributions}$

$\textbf{A} \rightarrow \textbf{ZH} \rightarrow \textbf{II} / \nu \nu \ \textbf{bb} \ \textbf{-} \ \textbf{Mass Distributions}$

$A \to ZH \to II/\nu\nu$ bb – Resolved vs. Boosted

$hh \rightarrow b\overline{b}b\overline{b}$

$hh \rightarrow b\overline{b}b\overline{b}$

$hh \rightarrow b\overline{b}b\overline{b}$ – Limits

