Searches for Lepton Number Violation and Resonances in the $K^\pm o \pi \mu \mu$

On behalf of the NA48/2 collaboration

Radoslav Marchevski

Johannes Gutenberg University, Mainz supported with a fellowship through GRK Symmetry Breaking (DFG/GRK 1581)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

April 14 2016

Deep Inelastic Scattering 2016, DESY, Hamburg

(日) (同) (日) (日)

The NA48/NA62 experiments @ CERN

NA62 is the latest from a long tradition of fixed-target Kaon experiments in the CERN North Area

and the second second second second second		History of NA48/NA62 experiments		
and the second of the product of the				Re ϵ'/ϵ
		97-01	$NA48(K_S/K_L)$	Discovery of
Mary suiters and suiters in the	France			direct CPV
CERN Meyrin SPS North area This talk	20	02	NA48/1	Rare <i>K_S</i> and
			$(K_S/hyperons)$	hyperon decays
	IS CAIN	03-04	NA48/2	Direct CPV search
			(K^+/K^-)	in \mathcal{K}^\pm
	L	07-08	NA62-R _K	$R_{\mathcal{K}} = \mathcal{K}_{e2}^{\pm}/\mathcal{K}_{\mu 2}^{\pm}$
			(K^{+}/K^{-})	
	Contraction of the	15 -	NA62 (<i>K</i> ⁺)	$K^+ ightarrow \pi^+ u \overline{ u}$,
	and the second			Rare K^+ and π^0 decays
Switzerland	The State			
CLARKE CONTRACTOR				

NA62: currently \sim 200 collaborators, 29 institutions from 12 countries

・ロット 小型 とうかい きゅう

= 990

The NA48/2 Detector

Narrow K^{\pm} momentum spread: $P_{K} = 60 \text{ GeV/c}$, $\delta P_{K}/P_{K} \sim 1\% \text{ (rms)}$ Nominal K^{\pm} decay rate: $\sim 100 \text{ kHz}$ Main triggers: 3-track vertex, $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ Simultaneous K^{+} and K^{-} beams

${\sf Sub-detectors}$

- Spectrometer (4 DCH) $\frac{\sigma_P}{P} = 0.480\% \oplus 0.009\% p(GeV)$
- Scintillator Hodoscope Fast trigger, time measurement $\sigma_t \sim 200$ ps
- LKr EM Calorimeter

$$\frac{\text{High-granularity}}{E} = \frac{3.2\%}{\sqrt{E(GeV)}} \oplus \frac{9\%}{\sqrt{E(GeV)}} \otimes 0.42\%$$

$$\sigma_x = \sigma_y = \frac{4.2mm}{\sqrt{E(GeV)}} \oplus 0.6mm$$

Asaka-Shaposhnikov model (ν MSM) [PLB 620 (2005) 17]:

Dark Matter + Baryon Assymetry of the Universe (BAU) + low mass of SM ν can be explained by adding three sterile Majorana neutrinos N_i to the SM

- N_1 lightest $\mathcal{O}(\mathsf{keV})
 ightarrow \mathsf{Dark}$ Matter candidate
- N₂, N₃ nearly degenerate (100 MeV few GeV)
- $N_{2,3}$ production in K^{\pm} decays :
 - $K^{\pm} \rightarrow I^{\pm} N (I = \mu \text{ this talk}), K^{\pm} \rightarrow \pi^0 I^{\pm} N, \cdots$
- $\bullet~N_{2,3}$ decays for $m_{2,3} < m_{\it K}$ $m_{\it I}$:
 - $N \rightarrow \pi^{\pm} l^{\mp} (l = \mu \text{ this talk}), N \rightarrow \pi^0 \nu$ • $N \rightarrow l_1^{\pm} l_2^{\mp} \nu_2, N \rightarrow l_1^{\pm} l_2^{\mp} \nu_1$

Active-sterile neutrino mixing $|U|^2$

Effective vertices involving the sterile neutrinos N_i , the W^{\pm} , Z bosons and SM leptons

Inflatons

Shaposhnikov-Tkachev model [PLB 639 (2006) 414]

- ν MSM + a real scalar field (inflaton χ) with scale-invariant couplings
- Explains Universe homogeneity and isotropy on large scales/structures on smaller scales
- χ -Higgs mixing with mixing angle θ
- χ -Higgs coupling \rightarrow Universe reheating
- χ is unstable: $au \sim (10^{-8} 10^{-12})$ s

χ in Kaon decays [m $_{\chi} \leq 354 \text{ MeV/c}^2$]

$$BR(K^+
ightarrow \pi^+ \chi) = 1.3 imes 10^{-3} \left(rac{2|ec{p}_{\chi}|}{M_K}
ight) heta^2$$

Basic principles of the searches

- Fully reconstructed final states, 3-track vertex topology
- Similar topology to normalization channel $K^{\pm}
 ightarrow \pi^{\pm}\pi^{+}\pi^{-}$

 \rightarrow First-order cancellation of systematic effects (trigger efficiency, etc)

Exclusive search for the $K^\pm \to \pi^\mp \mu^\pm \mu^\pm$

- Main background: $K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ with $2\pi^{\pm} \to \mu^{\pm}\nu$ decays (one within the spectrometer)
- Sensitivity $\sim \frac{1}{N_K \times Acceptance}$
 - UL on ${\rm BR}({\cal K}^\pm \to \pi^\mp \mu^\pm \mu^\pm)$
 - UL on $\mathsf{BR}(\mathsf{K}^\pm o \mu^\pm \mathsf{N}_4) imes \mathsf{BR}(\mathsf{N}_4 o \pi^\mp \mu^\pm)$
- K^{\pm} decays in the fiducial volume:
 - $N_K \sim 2 \times 10^{11}$
 - measured from $K^{\pm}
 ightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays

Blind analysis:

- ${\cal K}^\pm o \pi^\mp \mu^\pm \mu^\pm$ MC simulation
 - Uniform phase-space $(|M_{fi}|^2 = 1)$
 - Resonant Majorana neutrino model
- Control region: $M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) <$ 480 MeV/c²

Event selection:

- One well-reconstructed 3-track vertex
- 2 same-sign muons, 1 odd-sign pion
- Total P_T consistent with zero
- Signal region: $|M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) M_{\mathcal{K}}| < 5 \text{ MeV/c}^2$

Expected background:

• $K^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$ MC simulation (10¹⁰ events) used to evaluate number of expected $K^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$ events in signal region

Event in signal region observed after finalising $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ selection: $N_{obs} = 1$ Expected background (from MC simulation): $N_{exp} = 1.163 \pm 0.867_{stat} \pm 0.116_{syst} \pm 0.021_{ext}$

Rolke-Lopez method used to get UL(N_{sig}): $BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11}$ @ 90% Cl

Basic principles of the searches

- Fully reconstructed final states, 3-track vertex topology
- Similar topology to normalization channel $K^{\pm}
 ightarrow \pi^{\pm}\pi^{+}\pi^{-}$
 - \rightarrow First-order cancellation of systematic effects (trigger efficiency, etc)

Exclusive search for the decays chains $K^{\pm} \rightarrow \pi^{\pm}X(X \rightarrow \mu^{+}\mu^{-}), K^{\pm} \rightarrow \mu^{\pm}N_{4}(N_{4} \rightarrow \pi^{\pm}\mu^{\mp})$

• Main background: ${\cal K}^\pm o \pi^\pm \mu^+ \mu^-$ (irreducible) o Limited sensitivity

• Sensitivity
$$\sim \frac{\sqrt{BR(K^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})}}{\sqrt{N_{K} \times Acceptance}} \sqrt{\frac{\sigma(M_{res})}{m_{K} - (m_{\pi} + 2m_{\mu})}}$$

• UL on BR($K^{\pm} \to \pi^{\pm}X$) × BR($(X \to \mu^{+}\mu^{-})$)

• UL on
$$BR(K^{\pm} \rightarrow \mu^{\pm} N_4) \times BR(N_4 \rightarrow \pi^{\pm} \mu^{\mp})$$

The opposite-sign muons selection (LNC)

Event selection:

- One well-reconstructed 3-track vertex
- 2 opposite-sign muons, 1 odd-sign pion
- Total P_T consistent with zero
- Signal region: $|M(\pi^{\pm}\mu^{+}\mu^{-}) M_{\mathcal{K}}| < 8 \text{ MeV/c}^{2}$

Scanning performed to search for peaks in $M(\pi^{\pm}\mu^{\mp})$ and $M(\mu^{+}\mu^{-})$ invariant mass distributions

3489 $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ candidates in the signal region $K^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}$ background contamination: (0.36 ± 0.10) %

Radoslav Marchevski

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Procedure

- Variable scanning step = $0.5\sigma(M_{res})$ and window = $\pm 2\sigma(M_{res})$
- For each M_{res} : Observed events in data (N_{obs}) vs expected events from MC $(N_{exp}) \rightarrow UL(N_{sig})$
- Rolke-Lopez statistical treatment used in each mass hypothesis M_{res} to get UL(N_{sig})

Search for $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decays (LNV) - Majorana neutrinos

- 2 possibilities in building $M(\pi^{\mp}\mu^{\pm})$ [same sign muons]
 - Only the closest to the invariant mass to M_{res} considered
- 284 mass hypotheses M_{res} tested

Search for resonances in
$${\cal K}^\pm o \pi^\pm \mu^+ \mu^-$$

- 267 hypotheses for $M(\pi^{\pm}\mu^{\mp})$
- 280 hypotheses for $M(\mu^-\mu^+)$

Search for $\overline{K^{\pm}} \rightarrow \mu^{\pm} N_4 (N_4 \rightarrow \pi^{\mp} \overline{\mu^{\pm}})$ decays

Search for $K^{\pm} \rightarrow \mu^{\pm} N_4 (N_4 \rightarrow \pi^{\pm} \mu^{\mp})$ decays

Search for $K^{\pm} \to \pi^{\pm} X(X \to \mu^{+} \mu^{-})$ decays

Conclusions

 $\sim 2\times 10^{11} {\it K}^\pm$ decays recorded by NA48/2 in 2003-2004

New NA48/2 results

- **()** Search for LNV ${\cal K}^\pm o \pi^\mp \mu^\pm \mu^\pm$
 - $BR(K^\pm o \pi^\mp \mu^\pm \mu^\pm) < 8.6 imes 10^{-11}$ @ 90% CL [World best limit]
 - Factor of 10 improvement with respect to previous best limit [1.1×10^{-9} @ 90 %CL]
- **@** Search $\mathcal{K}^\pm o \mu^\pm N_4(N_4 o \pi^\mp \mu^\pm)$ decays [Majorana neutrinos]
 - Limits of the order of 10^{-10} for au < 100 ps
- **②** Search $K^\pm o \mu^\pm N_4 (N_4 o \pi^\pm \mu^\mp)$ decays [LNC heavy neutrinos]
 - Limits of the order of 10^{-9} for au < 100 ps
- **9** Search $K^{\pm}
 ightarrow \pi^{\pm} X(X
 ightarrow \mu^{+} \mu^{-})$ decays [Inflatons,...]
 - Limits of the order of 10^{-9} for au < 100 ps

Prospects for the new NA62 experiment

- **()** The new NA62 detector is optimised for $K^{\pm} \rightarrow \pi^+ \nu \overline{\nu}$
- **@** NA62 will collect the world-largest K^+ decay sample ($\sim 10^{13}$) in 3 years of data taking
- **③** Potential sensitivities 10^{-12} for K decays, 10^{-11} for π^0 decays

ヘロト 不得下 不足下 不足下