



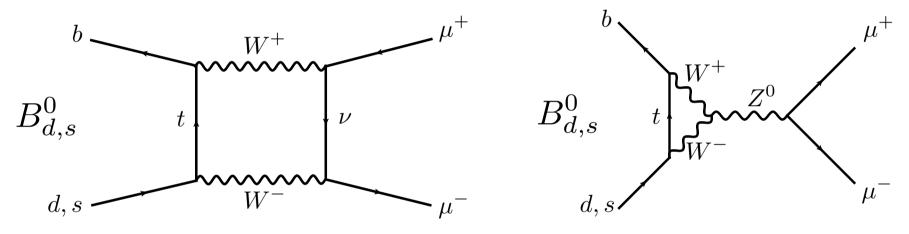



- Physics motivation:  $B_{s,d} \to \mu^+ \mu^-$
- ATLAS experiment and data samples
- Analysis:
  - Overview
  - Trigger
  - Event Selection
  - Backgrounds (and suppression)
  - Signal Fit Result
  - Normalisation mode:  $B^{\pm} \rightarrow J/\psi K^{\pm}$
  - Branching Fraction Calculation
  - Systematic Errors
  - Result

### Summary






# **PHYSICS MOTIVATION:** $B_{s,d} \rightarrow \mu^+ \mu^-$



$$B_{s,d} \to \mu^+ \mu^-$$

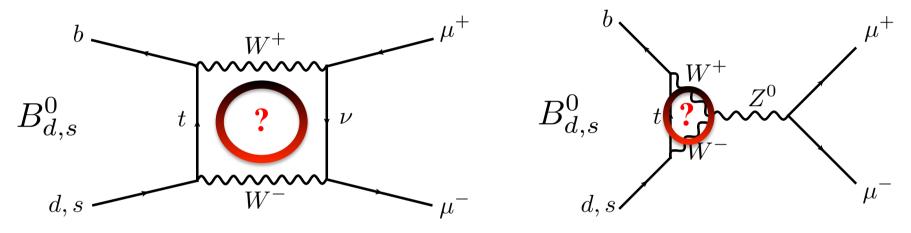


- Rare decays: excellent probes for new physics (NP).
- Suppressed standard model (SM) decays like FCNCs can exhibit large effects beating against small NP amplitudes.



SM rate is theoretically well known:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$
  
$$\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$
  
Bobeth et al., PRL **112** (2014) 101801 (arXiv:1311.0903)


NP can enhance or suppress this rate.



$$B_{s,d} \to \mu^+ \mu^-$$



- Rare decays: excellent probes for new physics (NP).
- Suppressed standard model (SM) decays like FCNCs can exhibit large effects beating against small NP amplitudes.

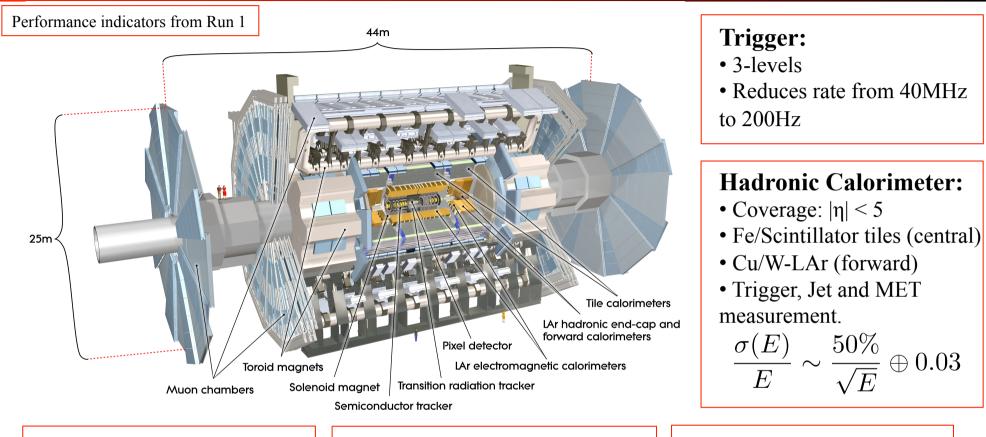


SM rate is theoretically well known:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$
  
$$\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$
  
Bobeth et al., PRL **112** (2014) 101801 (arXiv:1311.0903)

NP can enhance or suppress this rate.






## ATLAS EXPERIMENT AND DATA SAMPLES



# The ATLAS Detector





#### Muon spectrometer: (MS)

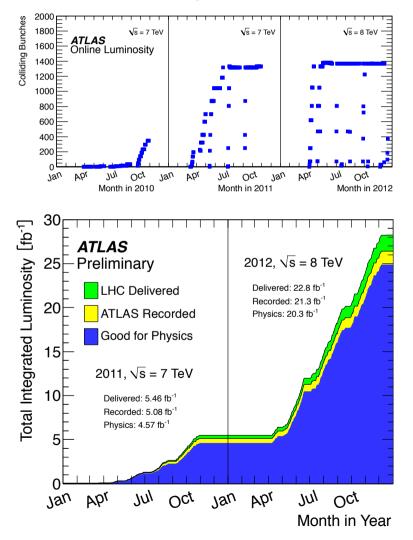
- Coverage:  $|\eta| < 2.7$
- Air core torroids (<B> 0.5T)
- Gas-based muon chambers
- Provides muon trigger
- $\sigma(p)/p \sim 10\%$

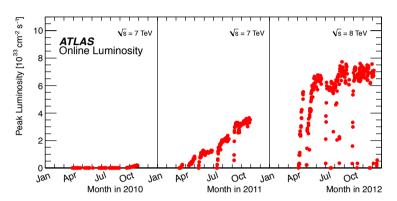
Inner detector: (ID)

- Coverage:  $|\eta| < 2.5$
- Solenoid B = 2T
- Si Pixels, microstrips, and TRT straw tracker system.

$$\frac{\sigma(p_T)}{p_T} \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$$

#### LAr Calorimeter:


- Pb-LAr accordion structure
- $e/\gamma$  trigger, identification and measurement.


$$\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}}$$





 Excellent LHC (& ATLAS) performance during Run 1 data sample: 4.57 fb<sup>-1</sup> at 7 TeV; 20.4 fb<sup>-1</sup> at 8 TeV





This result uses the full Run 1 data sample & supersedes the previous ATLAS result.

Run 2 at the LHC is continuing; taking data again from the end of March.

ATLAS has been upgraded with an inner pixel layer (IBL) during the shutdown: will improve background suppression for Run 2 update of this analysis.





## ANALYSIS

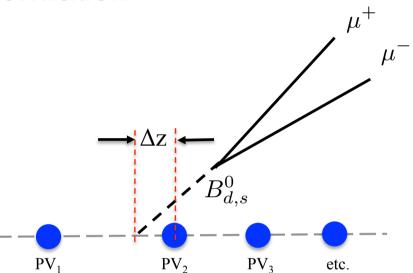




- Signal:
  - Select signal di-muon events from data.
  - Extract yield using an un-binned extended maximumlikelihood fit to the data.
  - Use control samples to understand background suppression BDT and other crosschecks.
- Normalise signal to  $B^{\pm} \to J/\psi K^{\pm}$ .
  - Requires knowledge of decay constants f<sub>s</sub>/f<sub>d</sub> and f<sub>u</sub>/f<sub>d</sub>.
  - Use the ATLAS result for  $f_s/f_d$  and assume Isospin:  $f_s/f_d = 0.240 \pm 0.020$ ATLAS Collaboration, PRL 115 (2015) 262001 (arXiv:1507.08925)
  - Check normalisation mode against  $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ .








- Use a di-muon signature in the MS to form triggers for these decays.
- 2011 data:  $p_T(\mu) > 4 \, GeV$
- 2012 data:
  - The  $p_T(\mu) > 4 \, GeV$  line was pre-scaled.
  - Secondary trigger lines were used to avoid some efficiency loss; using tighter  $P_T$  or  $|\eta|$  constraints.
  - $T_1$ : "higher threshold" trigger with  $p_T > 6$  GeV and > 4 GeV respectively for the two muons;
  - *T*<sub>2</sub>: "barrel" trigger with  $p_{\rm T} > 4$  GeV for both muon candidates and at least one of them with  $|\eta| < 1.05$  (and *T*<sub>1</sub> requirement not satisfied);
  - $T_3$ : basic di-muon trigger with  $p_T > 4$  GeV for both muon candidates (and  $T_1$ ,  $T_2$  requirements not satisfied).





- $\mu^{\pm}$ : Tracks using ID and MS information  $p_T(\mu) > 4 \, GeV$   $|\eta| < 2.5$
- **B**:  $P_T(B) > 8 \, GeV$  $|\eta| < 2.5$  $m_{\mu\mu} \in [4766, 5966] \, GeV$

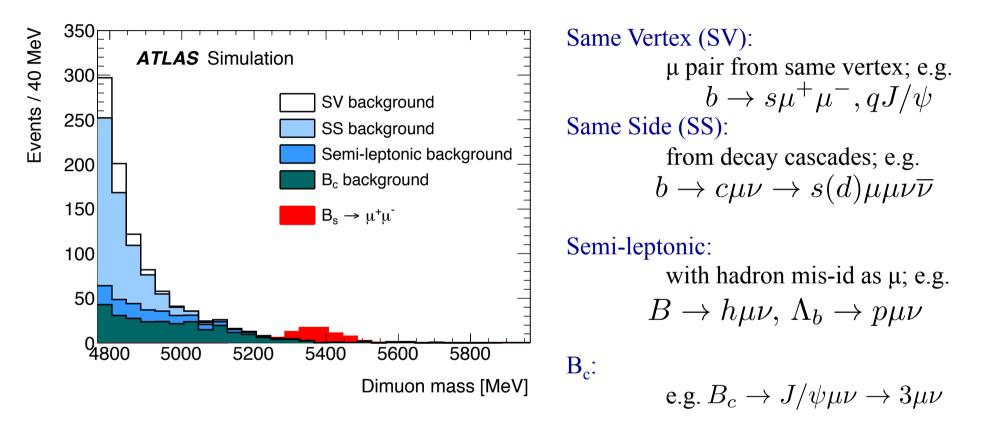


- Primary Vertex (PV):
  - Reconstructed using tracks not associated with secondary vertex.
  - Project B 3-vector back to collision axis.
  - Minimise (in z) POCA to PV<sub>i</sub>.





- Extraction of limit or branching fraction (B) depends critically on our understanding of the background...
  - Combinatoric events:
    - Pairs of independent muons selected from the event that pass the reconstruction.
  - Partially Reconstructed decays (PRD):  $B^0_{(s)} \rightarrow \mu^+ \mu^- X$

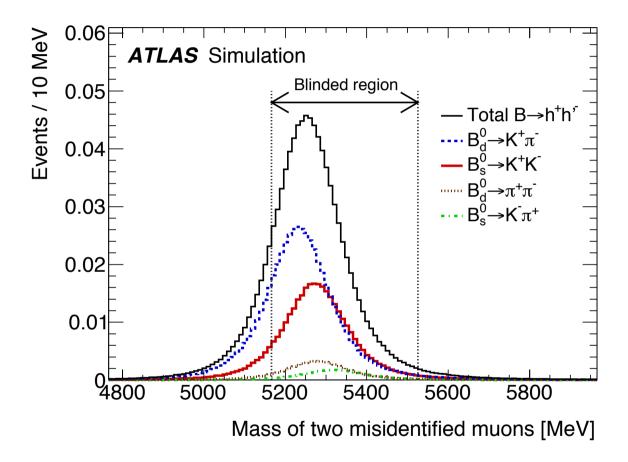

The system X is not reconstructed; accumulates on the low mass sideband.

- Peaking background:  $B^0_{(s)} \to hh'$ 
  - Mis-id the hadron ( $h'=\pi$ , K) as a  $\mu$  pair.





Partially Reconstructed Decays:




- Several competing contributions:
  - Dominated by same side (SS) background.
  - Feeds into the signal region from low mass side.



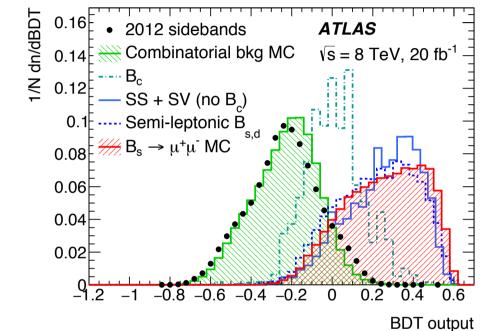


• Two body decays:  $B^0_{(s)} \to hh'$ 



- Dangerous background that can mimic signal.
- Use fake  $\mu$  BDT to suppress this contribution.

• $\mu$  fake rate sub-per-mille

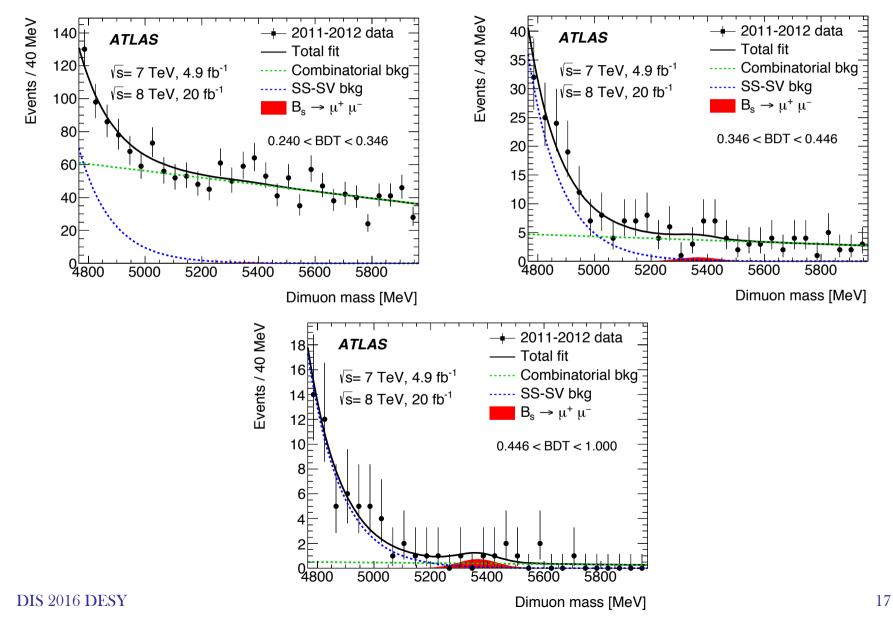

- Negligible contribution from  $\Lambda_b \to p\pi$ 

- Poor separation between B<sub>d</sub> and B<sub>s</sub> mesons.
- Expect 1.0±0.4 events of *hh*' background.





 Use a boosted decision tree (BDT) using 15 variables for combinatoric background suppression:




- Use  $B^{\pm} \rightarrow J/\psi K^{\pm}$  and  $B_s \rightarrow J/\psi \phi$  control samples to validate data/MC agreement.
  - Data/MC difference accounted for as systematic error.
- Split the data into bins of equal expected signal yield (increasing purity).





### Fitted signal yields are $N(B_s)=16\pm 12$ , $N(B_d)=-11\pm 9$ events.



Normalisation Mode:  $B^{\pm} \rightarrow J/\psi K^{\pm}$ 

- 4 component fit: 16000 Events / 25 MeV 2012 data **ATLAS** 14000  $B^{\pm} \to J/\psi K^{\pm}$ Total fit result  $B^+ \rightarrow J/\psi K^+$ 12000  $\sqrt{s} = 8 \text{ TeV}, 2.7 \text{ fb}^{-1}$ PRD  $B^{\pm} \to J/\psi \pi^{\pm}$ 10000E Combinatorial bkg T<sub>3</sub> category  $B^+ \rightarrow J/\psi \pi^+$ 8000 Combinatoric background 6000 4000F Partially reconstructed decays 2000 Category  $N_{J/\psi K^+}$ n Pull 280  $T_1$  $46860 \pm 290 \pm$  $T_2$  $5200 \pm 84 \pm$ 100  $T_3$  $2512 \pm 91 \pm$ 42 5000 5200 5300 5400 5500 5100 5600 2011  $95\,900 \pm 420 \pm 1\,100$  $m_{J/\psi\;K^{*}}\,[\text{MeV}]$ 
  - Validated by computing the ratio:

$$\rho_{\pi/K} = \frac{\mathcal{B}(B^+ \to J/\psi\pi^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = 0.035 \pm 0.003 \pm 0.012$$

c.f. PDG average of 0.040±0.004.



 Several trigger lines are used for this analysis; these are accounted for via:

$$\begin{split} \mathcal{B}(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}) &= N_{d(s)} \times \left[ \mathcal{B}(B^{+} \rightarrow J/\psi K^{+}) \times \mathcal{B}(J/\psi \rightarrow \mu^{+}\mu^{-}) \right] \times \frac{f_{u}}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}} \\ \bullet \quad \text{where} \quad \mathcal{D}_{\text{norm}} &= \sum_{k} N_{J/\psi K^{+}}^{k} \alpha_{k} \left( \frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi K^{\pm}}} \right)_{k} \\ f_{s}/f_{d} &= 0.240 \pm 0.020 \text{ and } f_{u}/f_{d} = 1 \\ \varepsilon_{i} \text{ are efficiencies for signal/normalisation} \\ \alpha_{k} \text{ are trigger/luminosity weight factors} \\ \bullet \text{ and the } N_{i} \text{ are yields obtained from the fits.} \end{split}$$



Several trigger lines are used for this analysis; these are accounted for via:

$$\begin{split} \mathcal{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) &= N_{d(s)} \times \left[ \mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \right] \times \frac{f_{u}}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}} \\ \bullet \quad \text{where} \quad \mathcal{D}_{\text{norm}} &= \sum_{k} N_{J/\psi K^{+}}^{k} \alpha_{k} \left( \frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi K^{\pm}}} \right)_{k} \\ f_{s}/f_{d} &= 0.240 \pm 0.020 \text{ and } f_{u}/f_{d} = 1 \\ \varepsilon_{i} \text{ are efficiencies for signal/normalisation} \\ \alpha_{k} \text{ are trigger/luminosity weight factors} \end{split}$$

• and the  $N_i$  are yields obtained from the fits.



 Several trigger lines are used for this analysis; these are accounted for via:

$$\begin{aligned} \mathcal{B}(\mathcal{B}_{(s)}^{0} \to \mu^{+} \mu^{-}) &= N_{d(s)} \times \left[ \mathcal{B}(\mathcal{B}^{+} \to J/\psi \mathcal{K}^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-}) \right] \times \frac{f_{u}}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}} \\ \end{aligned}$$
where  $\mathcal{D}_{\text{norm}} &= \sum_{k} N_{J/\psi \mathcal{K}}^{k} \left[ \alpha_{k} \left( \frac{\varepsilon_{\mu^{+} \mu^{-}}}{\varepsilon_{J/\psi \mathcal{K}^{+}}} \right)_{k} \right] \\ f_{s}/f_{d} &= 0.240 \pm 0.020 \text{ and } f_{u}/f_{d} = 1 \\ \varepsilon_{i} \text{ are efficiencies for signal/normalisation} \\ \alpha_{k} \text{ are trigger/luminosity weight factors} \end{aligned}$ 
and the  $N_{i}$  are yields obtained from the fits.





$$\mathcal{B}(\mathcal{B}_{(s)}^{0} \to \mu^{+}\mu^{-}) = N_{d(s)} \times \left[\mathcal{B}(\mathcal{B}^{+} \to J/\psi \mathcal{K}^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})\right] \times \left[\frac{f_{u}}{f_{d(s)}}\right] \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

$$\text{where } \mathcal{D}_{\text{norm}} = \sum_{k} N_{J/\psi \mathcal{K}^{+}}^{k} \alpha_{k} \left(\frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi \mathcal{K}^{\pm}}}\right)_{k} \cdot \frac{f_{u}}{\varepsilon_{i} |\mathcal{I}_{i}|} = 0.240 \pm 0.020 \text{ and } f_{u}/f_{d} = 1$$

$$\varepsilon_{i} \text{ are efficiencies for signal/normalisation}$$

$$\alpha_{k} \text{ are trigger/luminosity weight factors}$$

• and the  $N_i$  are yields obtained from the fits.

See talk by Artem Maevskiy this afternoon for more detail regarding the  $f_s/f_d$  analysis.

The ATLAS  $f_s/f_d$  analysis matches the fiducial selection for this search.



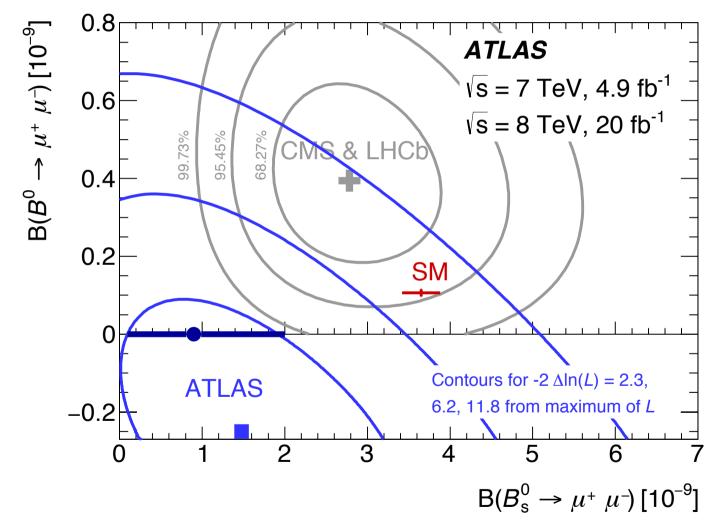
 Several trigger lines are used for this analysis; these are accounted for via:

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) = N_{d(s)} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})\right] \times \frac{f_{u}}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$
• where  $\mathcal{D}_{\text{norm}} = \sum_{k} N_{J/\psi K^{+}}^{k} \alpha_{k} \left(\frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi K^{+}}}\right)_{k}$ .  
 $f_{s}/f_{d} = 0.240 \pm 0.020$  and  $f_{u}/f_{d} = 1$   
 $\varepsilon_{i}$  are efficiencies for signal/normalisation  
 $\alpha_{k}$  are trigger/luminosity weight factors  
• and the  $N_{i}$  are yields obtained from the fits.  
 $\mathcal{B}(B_{d} \to \mu^{+}\mu^{-}) < 4.2 \times 10^{-10}$ 

$$\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$$
  
$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$$
  
$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$$






- Statistically limited measurement.
- Main systematic contribution from continuum BDT.

|                                                                                             | $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ | $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ |  |
|---------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|--|
| Scale uncertainties                                                                         |                                      |                                    |  |
| $\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu\mu)$ branching fractions | 3.1%                                 | 3.1%                               |  |
| $B^{0}_{(s)}/B^{+}$ production ratio                                                        | 8.3%                                 | 0                                  |  |
| $B^+$ yield and $B^0_{(s)}/B^+$ efficiency ratio                                            | 5.9%                                 | 5.9%                               |  |
| Relative efficiency of continuum-BDT intervals                                              | 9%                                   | 9%                                 |  |
| Signal and background model                                                                 | 6%                                   | 0                                  |  |
| Total scale uncertainty                                                                     | 16%                                  | 11%                                |  |
| Offset uncertainties                                                                        |                                      |                                    |  |
| Signal and background model                                                                 | $0.2 \times 10^{-9}$                 | $0.7 \times 10^{-10}$              |  |





### ATLAS is consistent with the SM, LHCb and CMS.



Room for NP destructively interfering with the SM.



## Summary



- Presented results for the ATLAS search for  $B_{s,d} \rightarrow \mu^+ \mu^$ using Run 1 data from the LHC.
- We obtain:

$$\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$$
  

$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$$
  

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$$
  
(@ 95% C.L.)

- Compatible with (lower than) the SM (p-value of 0.048).
- Compatible with (lower than) the other LHC experiments.





## BACKUP





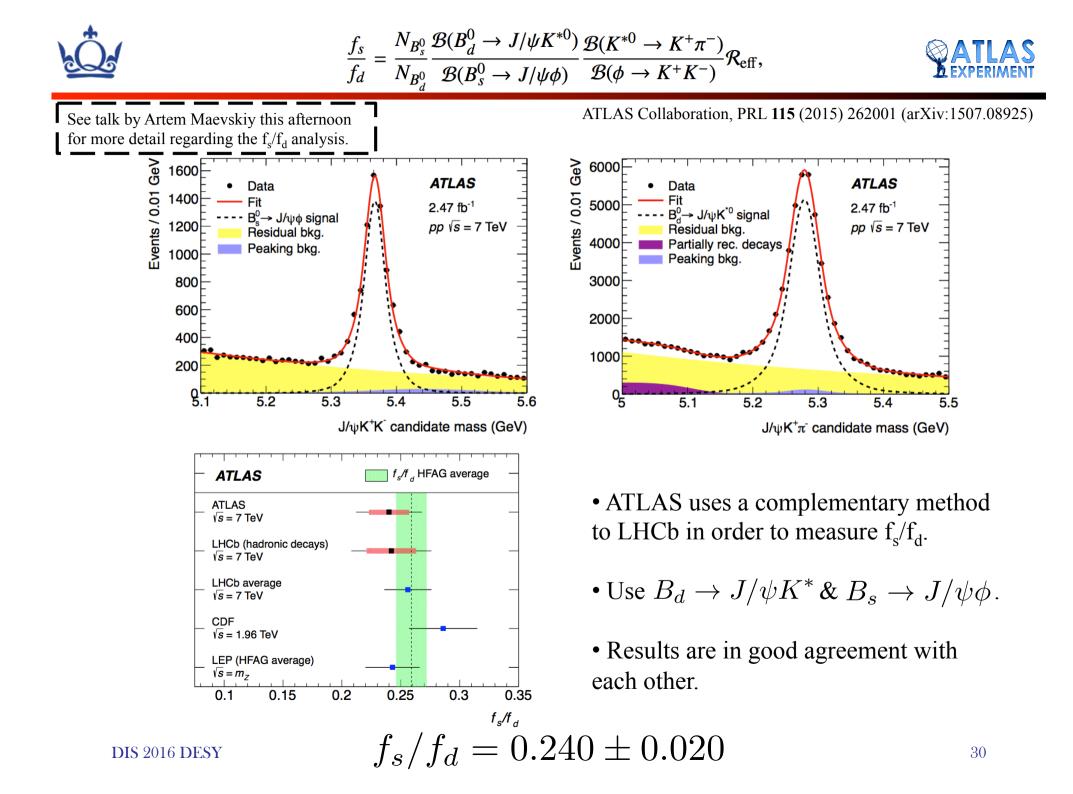
- Critical aspect of the analysis:
  - Get this wrong and you could fake a signal/destroy your sensitivity to NP.
  - 1. Absolute value of the track rapidity measured in the ID.
  - 2. Ratio q/p (charge over momentum) measured in the MS.
  - 3. Scattering curvature significance: maximum variation of the track curvature between adjacent layers of the ID.
  - 4.  $\chi^2$  of the track reconstruction in the MS.
  - 5. Number of hits used to reconstruct the track in the MS.
  - 6. Ratio of the values of q/p measured in the ID and in the MS, corrected for the average energy loss in the calorimeter.
  - 7.  $\chi^2$  of the match between the tracks reconstructed in the ID and MS.
  - 8. Energy deposited in the calorimeters along the muon trajectory obtained by combining ID and MS tracks.

Use the following control samples to validate the performance of the fake  $\mu$  BDT:

$$B^{\pm} \to J/\psi K^{\pm}$$
$$\phi \to K^+ K^-$$

- Punch through @ 3% (8%) level for  $K(\pi)$ .
- Fake rate @ 0.09% / 0.04% / <0.01% for K / π / ρ.</p>

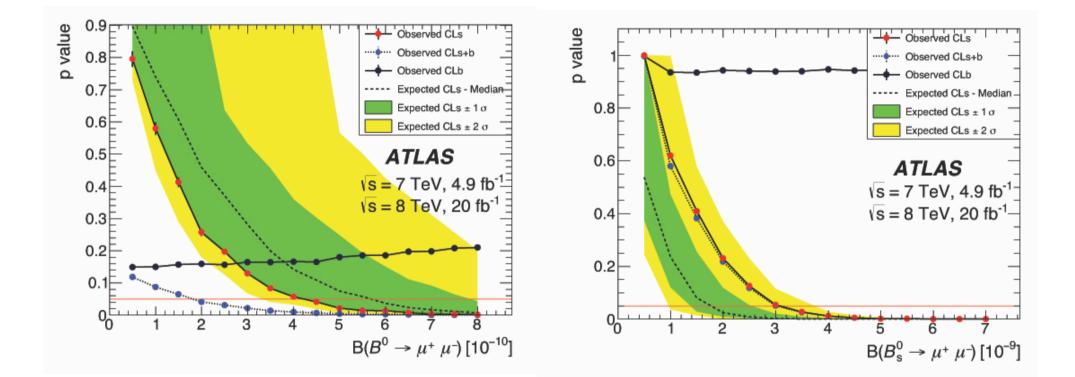



## Continuum BDT



| Variable                         | Description                                                                                                                                                                                                                                                                                                                         | Validated using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $p_T^B$                          | Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p}_T^B$ .                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $\chi^2_{\rm PV,DV  xy}$         | Significance of the separation $\overrightarrow{\Delta x}$ between production (PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_T \cdot \sum_{\overrightarrow{\Delta x}_T}^{-1} \cdot \overrightarrow{\Delta x}_T$ , where $\sum_{\overrightarrow{\Delta x}_T}$ is the covariance matrix.       | $B^{\pm} \to J/\psi K^{\pm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $\Delta R$                       | 3-dimensional opening between $\vec{p}^B$ and $\vec{\Delta x}$ : $\sqrt{\alpha_{2D}^2 + \Delta \eta^2}$                                                                                                                                                                                                                             | $B_s \to J/\psi \phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $ \alpha_{2D} $                  | Absolute value of the angle between $\overrightarrow{p}_T^B$ and $\overrightarrow{\Delta x_T}$ (transverse projection).                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $L_{xy}$<br>$\mathbb{IP}_B^{3D}$ | Projection of $\overrightarrow{\Delta x_T}$ along the direction of $\overrightarrow{p}_T^B$ : $(\overrightarrow{\Delta x_T} \cdot \overrightarrow{p}_T^B)/ \overrightarrow{p}_T^B $ .<br>3-dimensional impact parameter of the <i>B</i> candidate to the associated PV.                                                             | control modes and sidebands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $DOCA_{\mu\mu}$                  | Distance of closest approach (DOCA) of the two tracks forming the $B$ candidate (3-dimensional).                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $\Delta \phi_{\mu\mu}$           | Difference in azimuthal angle between the momenta of the two tracks forming the $B$ candidate.                                                                                                                                                                                                                                      | • 2012 sidebands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $ d_0 ^{max}$ sig.               | Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the $B$ candidate, in the transverse plane.                                                                                                                                                                                      | $\begin{array}{c} 3 \\ 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $ d_0 ^{min}$ sig.               | Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the $B$ candidate, in the transverse plane.                                                                                                                                                                                     | 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $P_L^{min}$                      | Value of the smaller projection of the momenta of the muon candidates along $\overrightarrow{p}_T^B$ .                                                                                                                                                                                                                              | 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| I <sub>0.7</sub>                 | Isolation variable defined as ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and of the transverse momenta of all additional tracks contained within a cone $\Delta R < 0.7$ from the <i>B</i> direction. Only tracks with $p_T > 0.5$ GeV and associated to the same PV as the <i>B</i> candidate are included in the sum. | 10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| DOCA <sub>xtrk</sub>             | DOCA of the closest additional track to the decay vertex of the <i>B</i> candidate. Tracks associated to a PV different from the <i>B</i> candidate are excluded.                                                                                                                                                                   | Q 2<br>Q 1.5<br>Q 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $N_{xtrk}^{close}$               | Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk,DV}}) < 1$ . The tracks associated to a PV different from the <i>B</i> candidate are excluded.                                                                                                             | d 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $\chi^2_{\mu,xPV}$               | Minimum $\chi^2$ for the compatibility of a muon in the <i>B</i> candidate with a PV different from the one associated to the <i>B</i> candidate.                                                                                                                                                                                   | $\overset{0}{\frown} \qquad \overset{0}{\frown}  \overset{0}{\to}  \overset{0}$ |  |

Data/MC discrepancies do not significantly alter the BDT performance and are accounted for in the systematic error reported.

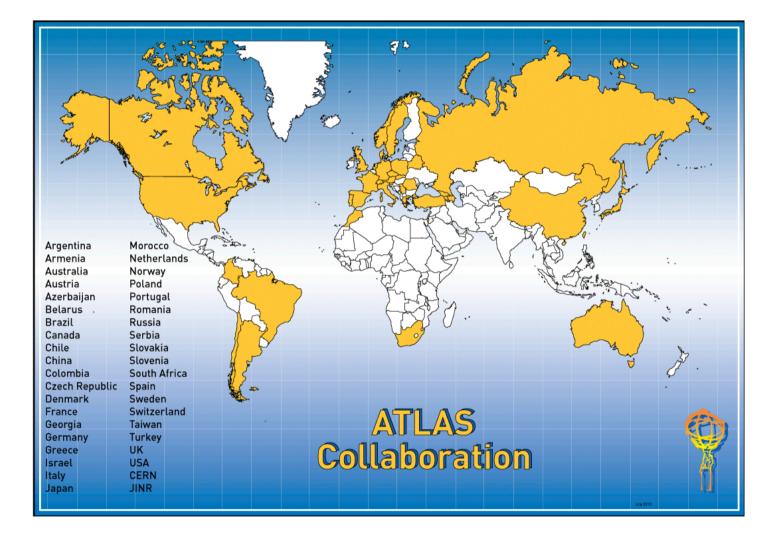

**DIS 2016 DESY** 












$$\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$$
  
$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$$
 (@ 95% C.L.)





### Over 3000 Physicists from 177 institutes in 38 countries





2.1m

## **ATLAS** Detector

Barrel semiconductor tracker

Pixel detectors

Barrel transition radiation tracker



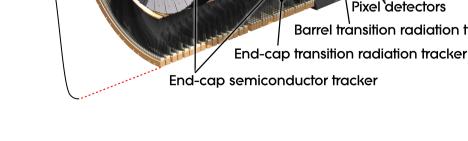
### **Inner Detector (ID) consists of:**

**Pixel** detectors Semiconductor Tracker (SCT) Transition radiation tracker (TRT)

6.2m

#### **Provides:**

Precision tracking and vertexing


### New for run 2:

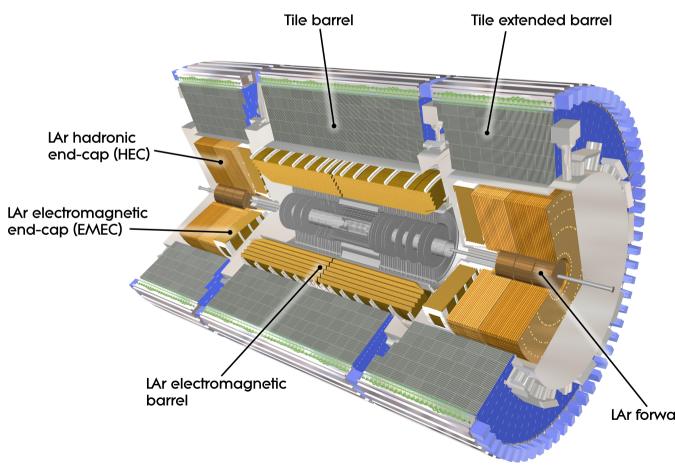
Small radius pixel layer (IBL); expect improved  $d_0$ , lifetime resolution etc.

#### **Inner detector: (ID)**

- Coverage:  $|\eta| < 2.5$
- Solenoid B = 2T
- Si Pixels, microstrips, and TRT straw tracker system.

 $\frac{\sigma(p_T)}{2} \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$  $p_T$ 






## **ATLAS** Detector



### **Calorimeter consists of:**

### LAr barrel and end-caps Tile calorimeter



#### Hadronic Calorimeter:

- Coverage:  $|\eta| < 5$
- Fe/Scintillator tiles (central)
- Cu/W-LAr (forward)
- Trigger, Jet and MET measurement.

$$\frac{\sigma(E)}{E}\sim \frac{50\%}{\sqrt{E}}\oplus 0.03$$

#### LAr Calorimeter:

- Pb-LAr accordion structure
- $e/\gamma$  trigger, identification and measurement.

$$\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}}$$

LAr forward (FCal)



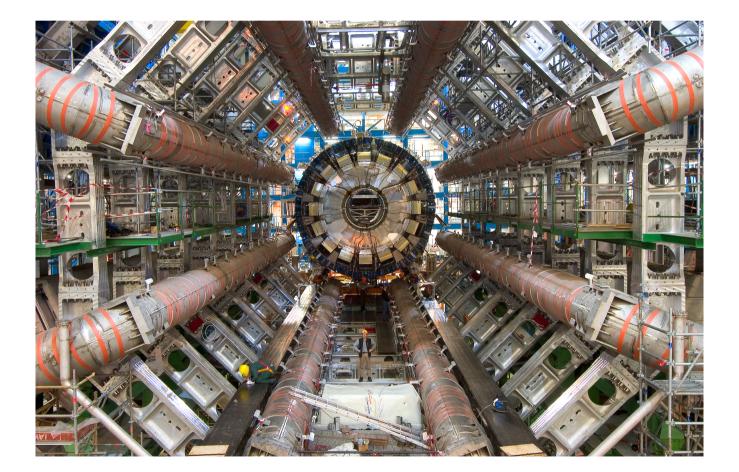
## **ATLAS Detector**



### Magnet systems consists of:

Solenoid (surrounds the ID; provides B = 2T) Torroid (embedded in the muon system; provides  $\langle B \rangle \sim 0.5 T$ )





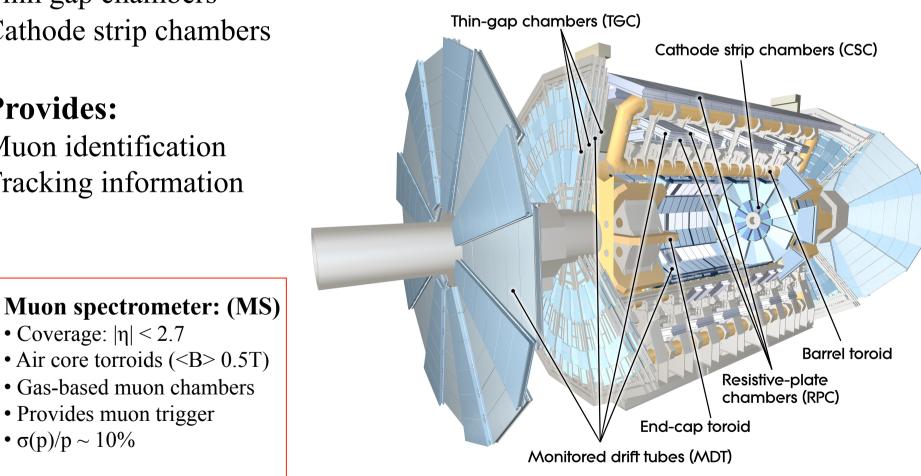

## **ATLAS Detector**



### Magnet systems consists of:

Solenoid (surrounds the ID; provides B = 2T) Torroid (embedded in the muon system; provides  $\langle B \rangle \sim 0.5 T$ )










### Muon system consists of: **RPCs** Monitored Drift tubes Thin gap chambers Cathode strip chambers

### **Provides:** Muon identification Tracking information



**DIS 2016 DESY** 

•  $\sigma(p)/p \sim 10\%$ 

• Coverage:  $|\eta| < 2.7$ 

• Air core torroids (<B> 0.5T)

• Gas-based muon chambers

• Provides muon trigger