TMD Physics at 12 GeV Jefferson Lab with SoLID

Target

Beamline

Tianbo Liu (On behalf of SoLID Collaboration)

Duke University and Duke Kunshan University

Duke

Overview of SoLID

Full exploitation of JLab 12 GeV upgrade

- The capability to handle high luminosity $L \sim 10^{37} \text{ cm}^{-2} \text{ s}^{-1}$. (for SIDIS)
- Large acceptance with full 2π azimuthal angle coverage.

Polar angle coverage: 8°~24°.

(SIDIS & J/ψ setup)

Five highly rated approved experiments

- Nucleon structure: three-dimensional imaging of the nucleon in momentum space in valence quark region. E12-10-006, E12-11-007, E12-11-008 (SIDIS)
- Fundamental symmetries: new physics in the 10~20 TeV region, complementary to the reach of LHC. E12-10-007 (PVDIS)
- QCD: probe the color field in the nucleon, access to QCD conformal anomaly. E12-12-006 (J/ψ)

Solenoidal Large Intensity Device

Overview of SoLID

Full exploitation of JLab 12 GeV upgrade

- The capability to handle high luminosity $L \sim 10^{37} \text{ cm}^{-2} \text{ s}^{-1}$. (for SIDIS)
- Large acceptance with full 2π azimuthal angle coverage.

Polar angle coverage: 8°~24°.

(SIDIS & J/ψ setup)

Collimato

Five highly rated approved experiments

- Nucleon structure: three-dimensional imaging of the nucleon in momentum space in valence quark region. E12-10-006, E12-11-007, E12-11-008 (SIDIS)
- Fundamental symmetries: new physics in the 10~20 TeV region, complementary to the reach of LHC. E12-10-007 (PVDIS)
- QCD: probe the color field in the nucleon, access to QCD conformal anomaly. E12-12-006 (J/ψ)

1 m

Beamline

Light Gas

3

SIDIS @ SoLID

Approved SIDIS experiments 11/8.8 GeV

- E12-10-006: Single Spin Asymmetry on Transversely polarized ³He, 90 days.
- E12-11-007: Single and Double Spin Asymmetry on Longitudinally polarized ³He, 35 days.
- E12-10-008: Single Spin Asymmetry on Transversely polarized proton (NH₃), 120 days.

 $P_n = 86\%$, $P_p = -2.8\%$

Total about 1400 ³He bins and 650 proton bins in *x*, *z*, Q^2 , P_T

High statistics (example)

Nucleon Spin Decomposition

Proton spin puzzle

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s \sim 0.3$$

Spin decomposition

$$J = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Quark spin only contributes a small fraction to nucleon spin.

J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Access to $L_{q/g}$

It is necessary to have transverse information.

Coordinate space: GPDs Momentum space: TMDs

3D imaging of the nucleon.

Unified View of Nucleon Structure

Light-front wave function $\Psi(x_i, k_{T_i})$

Unified View of Nucleon Structure

Light-front wave function $\Psi(x_i, k_{T_i})$

Structure Functions

SIDIS differential cross section

18 structure functions $F(x, z, Q^2, P_T)$, model independent. (one photon exchange approximation)

 $\begin{aligned} \frac{d\sigma}{dxdydzdP_T^2d\phi_hd\phi_S} \\ &= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \\ &\times \left\{F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h \\ &+ S_L \left[\sqrt{2\epsilon(1+\epsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon F_{UL}^{\sin2\phi_h} \sin2\phi_h\right] + \lambda_e S_L \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h\right] \\ &+ S_T \left[(F_{UT,T}^{\sin(\phi_h-\phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h-\phi_S)}) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h+\phi_S)} \sin(\phi_h + \phi_S) + \epsilon F_{UT}^{\sin(3\phi_h-\phi_S)} \sin(3\phi_h - \phi_S) \\ &+ \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin\phi_S} \sin\phi_S + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin(2\phi_h-\phi_S)} \sin(2\phi_h - \phi_S)\right] \\ &+ \lambda_e S_T \left[\sqrt{1-\epsilon^2} F_{LT}^{\cos\phi_h} \cos\phi_S + \sqrt{2\epsilon(1-\epsilon)} F_{LT}^{\cos(2\phi_h-\phi_S)} \cos(2\phi_h - \phi_S)\right] \right\} \end{aligned}$

In parton model, $F(x, z, Q^2, P_T)$ s are expressed as the convolution of TMDs.

Leading Twist TMDs

Unpolarized Quark in *p*↑

$$f_{q/p\uparrow}(x,\mathbf{k}_{\perp}) = f_1^q(x,k_{\perp}) - f_{1T}^{\perp q}(x,k_{\perp}) \frac{\mathbf{P} \times \mathbf{k}_{\perp} \cdot \mathbf{S}}{M}$$

Sivers distribution

 f_{1T}^{\perp} \bullet - \bullet

naively time-reversal odd.

$$f_{1T}^{\perp q}(x,k_{\perp})\Big|_{\text{SIDIS}} = -f_{1T}^{\perp q}(x,k_{\perp})\Big|_{\text{DY}}$$

 $A_{UT}^{\sin(\phi_h - \phi_S)} \sim f_{1T}^{\perp}(x, k_{\perp}) \bigotimes D_1(z, p_{\perp})$

Measurement in SIDIS

Single spin asymmetry (Sivers asymmetry)

SoLID Impact on Sivers

$$f_{1T}^{\perp(1)}(x) = \int d^2 \mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^2}{2M^2} f_{1T}^{\perp}(x, k_{\perp})$$

95% C.L.

parametrization by M. Anselmino et al., EPJ A 39, 89 (2009).

SoLID projection with transversely polarized neutron and proton data.

Quark Transverse Momentum in $p\uparrow$

SoLID projection with transversely polarized neutron and proton data.

$$\langle \mathbf{k}_{\perp} \rangle = -M \int \mathrm{d}x f_{1T}^{\perp(1)}(x) \left(\mathbf{S} \times \hat{\mathbf{P}} \right)$$

 $\langle k_{\perp} \rangle^{u} \langle k_{\perp} \rangle^{d}$ 96⁺⁶⁰₋₂₈ MeV -113⁺⁴⁵₋₅₁ MeV 96^{+2.8}_{-2.4} MeV -113^{+1.3}_{-1.7} MeV

Transverse Spin Structure

Transversity

(Collinear & TMD)

Chiral-odd

Unique for the quarks. No mixing with gluons. Simpler evolution effect.

Measurement in SIDIS

Single spin asymmetry (Collins asymmetry)

$$A_{UT}^{\sin(\phi_h + \phi_S)} \sim h_1(x, k_\perp) \bigotimes H_1^\perp(z, p_\perp)$$

 $H_1^{\perp}(z,p_{\perp})$ $\,$ Collins fragmentation function

A transverse counter part to the longitudinal spin structure: helicity **g**_{1L}

They are NOT the same due to relativity.

NOT accessible via inclusive DIS process. Must couple to another chiral-odd function. (e.g. Collins function H_1^{\perp})

Measured via SIDIS (E12-10-006, E12-11-008), Drell-Yan Di-hadron (approved as run group with E12-10-006)

SoLID Impact on Transversity

95% C.L.

parametrization by M. Anselmino et al., PR D 87, 094019 (2013).

SoLID projection with transversely polarized neutron and proton data.

SoLID Impact on Transversity TMD

95% C.L.

parametrization by M. Anselmino et al., PR D 87, 094019 (2013).

SoLID projection with transversely polarized neutron and proton data.

Tensor Charge

Definition

$$\langle P, S | \bar{\psi}_q i \sigma^{\mu\nu} \psi_q | P, S \rangle = \delta_T q \bar{u}(P, S) i \sigma^{\mu\nu} u(P, S)$$

$$\delta_T q = \int_0^1 \left[h_1^q(x) - h_1^{\bar{q}}(x) \right] \mathrm{d}x$$

A fundamental QCD quantity. Matrix element of local operators. Moment of transversity distribution. Valence quark dominant. Calculable in lattice QCD.

SoLID impact

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

 $d_n = \delta_T u \, d_u + \delta_T d \, d_d + \delta_T s \, d_s$

current neutron EDM limit $|d_n| < 2.9 \times 10^{-26} \, e \cdot \mathrm{cm}$

Pretzelosity distribution

 h_{1T}^{\perp} ()

Chiral-odd. NO gluon analogy.

Interference of light-front wave functions differing by $\Delta L = 2$. Measuring the difference between helicity and transversity, and hence relativistic effects. (spherically symmetric models)

Relation to OAM (canonical)

$$L_z^q = -\int \mathrm{d}x \mathrm{d}^2 \mathbf{k}_\perp \frac{\mathbf{k}_\perp^2}{2M^2} h_{1T}^{\perp q}(x, k_\perp) = -\int \mathrm{d}x h_{1T}^{\perp(1)q}(x) \qquad (\text{model dependent})$$

Measurement in SIDIS

Single spin asymmetry

$$A_{UT}^{\sin(3\phi_h - \phi_S)} \sim h_{1T}^{\perp}(x, k_{\perp}) \bigotimes H_1^{\perp}(z, p_{\perp})$$

A global fit to 175 data from COMPASS, HERMES, and JLab found comparable with null signal hypothesis at 72% C.L..

C. Lefky, A. Prokudin, PR D 91, 034010 (2015).

⁶ GeV JLab E06-010, Y. Zhang et al., PR C 90, 055209 (2014).

SoLID Impact on Pretzelosity

Summary

- Lepton scattering is a powerful tool to probe the internal structure of the nucleon.
- Unprecedented precision with high luminosity and large acceptance at JLab 12-GeV with SoLID.
- SoLID-SIDIS program: multi-dimensional mapping in valence quark region with ultimate precision.
- TMD: transverse imaging of the nucleon, access to orbital angular momentum.
- Tensor charge and neutron EDM, constraint on new physics.

Thank you!

Soffer's Inequality

Soffer's bound

$$|h_1(x)| \le \frac{1}{2} \left[f_1(x) + g_{1L}(x) \right]$$

Global fits of transversity

Derived by using the positivity constraint on the forward scattering helicity amplitude.

M. Anselmino *et al.*, PR D 87, 094019 (2013).

Test Soffer's inequality @ SoLID

What Else in SIDIS @ SoLID

Worm-gears

Trans-helicity (worm-gear). Interference of light-front wave functions differing by $\Delta L = 1$. Measured by DSA $A_{LT}^{\cos(\phi_h - \phi_S)} \sim g_{1T}(x, k_{\perp}) \bigotimes D_1(z, p_{\perp})$ (The other worm-gear from $A_{UL}^{\sin 2\phi_h} \sim h_{1L}^{\perp}(x, k_{\perp}) \bigotimes H_1^{\perp}(z, p_{\perp})$.)

Subleading twist effect

Beam spin asymmetry $A_{LU}^{\sin \phi_h}$ from twist-3 TMDs. Other subleading twist asymmetries, *e.g.* $A_{UT}^{\sin(2\phi_h - \phi_S)}$, $A_{UT}^{\sin \phi_S}$, $A_{LT}^{\cos \phi_S}$...

Unpolarized process

Multiplicity or differential cross section.

Cahn effect $f_1 \otimes D_1$ Boer-Mulders effect $h_1^{\perp} \otimes H_1^{\perp}$