BFKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

#### FRANCESCO GIOVANNI CELIBERTO

#### francescogiovanni.celiberto@fis.unical.it



UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI FISICA

Università della Calabria & INFN-Cosenza Italy



based on

[F.G. C., D.Yu. Ivanov, B. Murdaca, A. Papa (2016)]

to appear in Eur. Phys. J. arXiv:1601.07847

DIS 2016: 24<sup>th</sup> International Workshop on Deep Inelastic Scattering and Related Subjects April 11<sup>st</sup> - 15<sup>th</sup>, 2016 DESY Hamburg

Results 0000000000

# Outline

#### 1 Introduction

Mueller-Navelet jet production

#### 2 Theoretical setup

- BFKL resummation
- Cross section and central rapidity range
- BLM optimization procedure

#### 3 Results

• Numerical analysis

#### 4 Conclusions

Theoretical setup

Results 0000000000

# Outline

#### 1 Introduction

Mueller-Navelet jet production

#### Theoretical setup

- BFKL resummation
- Cross section and central rapidity range
- BLM optimization procedure

#### 3 Results

Numerical analysis

#### 4 Conclusions

F.G. Celiberto BFKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC April 12th, 2016

Theoretical setup

Results 0000000000 Conclusions

#### **Mueller-Navelet jets**

$$\frac{d\sigma}{dx_{J_1}dx_{J_2}d^2k_{J_1}d^2k_{J_2}} = \sum_{i,j=q,\bar{q},g} \int_0^1 dx_1 \int_0^1 dx_2 f_i(x_1,\mu) f_j(x_2,\mu) \frac{d\hat{\sigma}_{i,j}(x_1x_2s,\mu)}{dx_{J_1}dx_{J_2}d^2k_{J_1}d^2k_{J_2}}$$

- $\diamond$  large jet transverse momenta:  $\vec{k}_{J,1}^2 \sim \vec{k}_{J,2}^2 \gg \Lambda_{
  m QCD}^2 \Rightarrow$  pQCD allowed
- $\circ \text{ large rapidity gap between jets (high energies)} \Rightarrow \Delta y = \ln \frac{x_{J_1} x_{J_2} s}{|\vec{k}_{J_1}||\vec{k}_{J_2}|}$  $\Rightarrow BFKL resummation: \quad \sum_n \left(a_n^{(0)} \alpha_s^n \ln^n s + a_n^{(1)} \alpha_s^n \ln^{n-1} s\right)$



Mueller-Navelet jets at LO: a back-to-back di-jet reaction

Picture from [D. Colferai, F. Schwennsen, L. Szymanowski, S. Wallon (2010)]

-.G. Celibert

effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

pril 12th, 2016

Results 0000000000

5 / 1

# Outline

#### Introduction

• Mueller-Navelet jet production

#### 2 Theoretical setup

- BFKL resummation
- Cross section and central rapidity range
- BLM optimization procedure

#### 3 Results

Numerical analysis

#### 4 Conclusions

Results 0000000000

## The **BFKL** resummation

pQCD, semi-hard processes:  $s \gg Q^2 \gg \Lambda_{\text{QCD}}^2$ total cross section for  $A + B \rightarrow X$ :  $\sigma_{AB}(s) = \frac{\mathcal{I}m_s(\mathcal{A}_{AB}^{AB})}{s} \iff$ optical theorem

- $\diamond$  Pomeron channel: t = 0 + singlet colour representation in the t-channel
- ♦ Regge limit:  $s \simeq -u \rightarrow \infty$ , *t* not growing with *s*

#### • BFKL resummation:

leading logarithmic approximation (LLA): $\alpha_s^n (\ln s)^n$ next-to-leading logarithmic approximation (NLA): $\alpha_s^{n+1} (\ln s)^n$ 



•  $\operatorname{Im}_{s}\left(\mathcal{A}_{AB}^{AB}\right)$  factorization:

convolution of the **Green's function** of two interacting Reggeized gluons with the **impact factors** of the colliding particles.

$$\mathrm{Im}_{s}(\mathcal{A}) = \frac{s}{(2\pi)^{D-2}} \int \frac{d^{D-2}q_{1}}{\vec{q}_{1}^{2}} \Phi_{\mathcal{A}}(\vec{q}_{1}, \mathbf{s}_{0}) \int \frac{d^{D-2}q_{2}}{\vec{q}_{2}^{2}} \Phi_{\mathcal{B}}(-\vec{q}_{2}, \mathbf{s}_{0}) \int_{\delta-i\infty}^{\delta+i\infty} \frac{d\omega}{2\pi i} \left(\frac{s}{\mathbf{s}_{0}}\right)^{\omega} G_{\omega}(\vec{q}_{1}, \vec{q}_{2})$$

• Green's function is process-independent

- → determined through the **BFKL equation** [Ya.Ya. Balitsky, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975)]
- Impact factors are process-dependent
  - ightarrow known in the NLA just for few processes
- \* forward jet production







gluon jet vertex

[J. Bartels, D. Colferai, G.P. Vacca (2003)] (small-cone approximation) [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa, A. Perri (2012)] (small-cone approximation) [D.Yu. Ivanov, A. Papa (2012)] (several jet algorithms discussed) [D. Colferai, A. Niccoli (2015)]

.G. Celiberto

ts and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

April 12th. 2016

Theoretical setup

Results 0000000000

# Outline

#### Introduction

• Mueller-Navelet jet production

#### 2 Theoretical setup

• BFKL resummation

#### • Cross section and central rapidity range

BLM optimization procedure

#### 3 Results

Numerical analysis

#### 4 Conclusions

Introduction OO Cross section and central rapidity range Theoretical setup

Results 0000000000 Conclusions

# **BFKL cross section...**

$$\frac{d\sigma}{dx_{J_1}dx_{J_2}d^2k_{J_1}d^2k_{J_2}} = \sum_{i,j=q,\bar{q},g} \int_0^1 dx_1 \int_0^1 dx_2 f_i(x_1,\mu)f_j(x_2,\mu) \frac{d\hat{\sigma}_{i,j}(x_1x_2s,\mu)}{dx_{J_1}dx_{J_2}d^2k_{J_1}d^2k_{J_2}}$$



- slight change of variable in the final state
- ▶ project onto the eigenfunctions of the LO BFKL kernel, i.e. transfer from the reggeized gluon momenta to the (*n*, *v*)-representation
- suitable definition of the azimuthal coefficients

$$\frac{d\sigma}{dx_{J_1}dx_{J_2} d|\vec{k}_{J_1}|d|\vec{k}_{J_2}|d\phi_{J_1}d\phi_{J_2}} = \frac{1}{(2\pi)^2} \left[ C_0 + \sum_{n=1}^{\infty} 2\cos(n\phi) C_n \right]$$
  
with  $\phi = \phi_{J_1} - \phi_{J_1} - \pi$ 

...useful definitions:

 $Y = \ln \frac{x_{J_1} x_{J_2} s}{|\vec{k}_{J_1}||\vec{k}_{J_2}|}, \qquad Y_0 = \ln \frac{s_0}{|\vec{k}_{J_1}||\vec{k}_{J_2}|}$ 

KL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

April 12th, 2016

Introduction OO Cross section and central rapidity range Theoretical setup

Results 0000000000 Conclusions

# ...and azimuthal coefficients

$$C_{n} = \int_{-\infty}^{+\infty} d\nu \ e^{(Y-Y_{0})\left[\bar{\alpha}_{s}(\mu_{R})\chi(n,\nu) + \bar{\alpha}_{s}^{2}(\mu_{R})K^{(1)}(n,\nu)\right]} \alpha_{s}^{2}(\mu_{R})$$
  
×  $c_{1}(n,\nu) c_{2}(n,\nu) \left[1 + \alpha_{s}(\mu_{R})\left(\frac{c_{1}^{(1)}(n,\nu)}{c_{1}(n,\nu)} + \frac{c_{2}^{(1)}(n,\nu)}{c_{2}(n,\nu)}\right)\right]$ 

where

$$\chi(n,\nu) = 2\psi(1) - \psi\left(\frac{n}{2} + \frac{1}{2} + i\nu\right) - \psi\left(\frac{n}{2} + \frac{1}{2} - i\nu\right)$$

$$\mathcal{K}^{(1)}(n,\nu) = \bar{\chi}(n,\nu) + \frac{\beta_0}{8N_c}\chi(n,\nu)\left(-\chi(n,\nu) + \frac{10}{3} + \iota\frac{d}{d\nu}\ln\left(\frac{c_1(n,\nu)}{c_2(n,\nu)}\right) + 2\ln\left(\mu_R^2\right)\right)$$

$$c_{1}(n,\nu,|\vec{k}|,x) = 2\sqrt{\frac{C_{F}}{C_{A}}}(\vec{k}^{2})^{i\nu-1/2} \left(\frac{C_{A}}{C_{F}}f_{g}(x,\mu_{F}) + \sum_{a=q,\bar{q}}f_{a}(x,\mu_{F})\right)$$

...several NLA-equivalent expressions can be adopted for  $C_n!$ 

...we use the *exponentiated* one

[F. Caporale, D.Yu Ivanov, B. Murdaca, A. Papa, (2014)]

-.G. Celiberto

BFKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC April 12th, 2016

Theoretical setup

Results 0000000000

# **Exclusion of central jet rapidities**

#### Motivation...

- $\diamond \ \ \mathsf{At given} \ \ Y = y_{J_1} y_{J_2} \ \ldots$
- $\to$   $|y_{J_i}|$  could be so small ( $\lesssim$  2), that the jet i is actually produced in the central region, rather than in one of the two forward regions
- ightarrow longitudinal momentum fractions of the parent partons  $x\sim 10^{-3}$
- → for  $|y_{J_i}|$  and  $|k_{J_i}| < 100 \text{ GeV} \Rightarrow$  increase of  $C_0$  by 25% due to NNLO PDF effects [J. Currie, A. Gehrmann-De Ridder, E. W. N. Glover, J. Pires (2014)]
  - ! Our BFKL description of the process could be not so accurate...

#### ...let's return to the original Mueller-Navelet idea!

- o remove regions where jets are produced at central rapidities...
- $\rightarrow\ ...$  in order to reduce as much as possible thoe retical uncertainties

Results 0000000000

# Outline

#### Introduction

• Mueller-Navelet jet production

#### 2 Theoretical setup

- BFKL resummation
- Cross section and central rapidity range
- BLM optimization procedure

#### 3 Results

Numerical analysis

#### 4 Conclusions

Results 0000000000

# **BLM** method

NLO BFKL corrections to  $C_0$  with opposite sign with respect to the leading order (LO) result and large in absolute value.

- ◊ ...call for some optimization procedure...
- $\diamond \ \ldots$  choose scales to mimic the most relevant subleading terms
- BLM [ S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)]
  - $\checkmark\,$  preserve the conformal invariance of an observable...
  - $\checkmark$  ...by making vanish its  $\beta_0\text{-dependent}$  part
- \* "Exact" BLM:
  - suppress NLO IFs + NLO Kernel  $\beta_0$ -dependent factors
- \* Partial (approximated) BLM:

a) 
$$(\mu_{R}^{BLM})^{2} = k_{1}k_{2} \exp \left[2\left(1+\frac{2}{3}I\right) - f(\nu) - \frac{5}{3}\right] \leftarrow \text{NLO IFs } \beta_{0}$$
  
b)  $(\mu_{R}^{BLM})^{2} = k_{1}k_{2} \exp \left[2\left(1+\frac{2}{3}I\right) - 2f(\nu) - \frac{5}{3} + \frac{1}{2}\chi(\nu, n)\right] \leftarrow \text{NLO Kernel } \beta_{0}$   
 $f(\nu) = 0 \text{ for this process}$ 

[F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa, (2015)]

F.G. Celiberto

BFKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

April 12th, 2016

Results •000000000

# Outline

#### Introduction

• Mueller-Navelet jet production

#### 2 Theoretical setup

- BFKL resummation
- Cross section and central rapidity range
- BLM optimization procedure

#### 3 Results

• Numerical analysis

#### Conclusions

Results 000000000

# **Observables and kinematics**

#### • Observables:

$$\phi$$
-averaged cross section  $C_0$ ,  $\langle \cos \left[ n \left( \phi_{J_1} - \phi_{J_2} - \pi \right) \right] \rangle \equiv \frac{C_n}{C_0}$ , with  $n = 1, 2, 3$ 

$$\frac{\langle \cos\left[2\left(\pi - \Delta\phi\right)\right]\rangle}{\langle \cos\left(\pi - \Delta\phi\right)\rangle} = \frac{\mathcal{C}_2}{\mathcal{C}_1} , \quad \frac{\langle \cos\left[3\left(\pi - \Delta\phi\right)\right]\rangle}{\langle \cos\left[2\left(\pi - \Delta\phi\right)\right]\rangle} = \frac{\mathcal{C}_3}{\mathcal{C}_2} , \text{ with } \Delta\phi = \phi_{J_2} - \phi_{J_1} .$$

Integrated coefficients:

$$C_{n} = \int_{y_{1,\min}}^{y_{1,\max}} dy_{1} \int_{y_{2,\min}}^{y_{2,\max}} dy_{2} \int_{k_{J_{1},\min}}^{\infty} dk_{J_{1}} \int_{k_{J_{2},\min}}^{\infty} dk_{J_{2}}$$
  
$$\delta(y_{1} - y_{2} - Y) \theta\left(|y_{1}| - y_{\max}^{C}\right) \theta\left(|y_{2}| - y_{\max}^{C}\right) \mathcal{C}_{n}(y_{J_{1}}, y_{J_{2}}, k_{J_{1}}, k_{J_{2}})$$

• Kinematic settings:

♦ 
$$R = 0.5$$
 and  $\sqrt{s} = 13$  TeV  
♦  $y_{\text{max}}^{\text{C}} \le |y_{J_{1,2}}| \le 4.7$ , with  $y_{\text{max}}^{\text{C}} = 0$ ,  $1.5 \simeq 4.7/3$ ,  $2.5$   
♦  $1 k_{1} \ge 20$  35 GeV:  $k_{1} \ge 20$  35 GeV: symmetric cuts 2 of

- ∧ 1. k<sub>J1</sub> ≥ 20, 35 GeV; k<sub>J2</sub> ≥ 20, 35 GeV; symmetric cuts, 2 choices
   2. k<sub>J1</sub> ≥ 20 Gev; k<sub>J2</sub> ≥ 35, 40, 45 GeV; asymmetric cuts, 3 choices
- Numerical tools: FORTRAN + NLO MSTW 2008 PDFs + CERNLIB

[A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, (2009)] http://cernlib.web.cern.ch/cernlib Introduction OO Numerical analysis

F.G. Celiberto

Theoretical setup

Results 000000000

Conclusions

# **Rapidity range**

$$\int_{-4.7}^{4.7} d\mathbf{y}_1 \int_{-4.7}^{4.7} d\mathbf{y}_2 \,\, \delta(\mathbf{y}_1 - \mathbf{y}_2 - \mathbf{Y}) \,\, \theta\Big(|\mathbf{y}_1| - \mathbf{y}_{\max}^{\mathbb{C}}\Big) \,\theta\Big(|\mathbf{y}_2| - \mathbf{y}_{\max}^{\mathbb{C}}\Big) \,\, \mathcal{C}_n\left(\mathbf{y}_{\mathbf{J}_1}, \mathbf{y}_{\mathbf{J}_2}, \mathbf{k}_{\mathbf{J}_1}, \mathbf{k}_{\mathbf{J}_2}\right)$$



Theoretical setup

Results 0000000000 Conclusions

# **Rapidity range**



Theoretical setup

Results 0000000000 Conclusions

# Rapidity range



Introduction 00 Numerical analysis Theoretical setup

Results 0000000000 Conclusions

# $C_0$ vs $Y = y_{J_1} - y_{J_2}$ - "exact" BLM method



12th, 2016

Introduction 00 Numerical analysis Theoretical setup

Results 00000000000 Conclusions

# $C_1/C_0$ vs Y - "exact" BLM method



F.G. Celiberto

3FKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

April 12th. 2016

Introduction OO Numerical analysis Theoretical setup

Results 00000000000

# $C_2/C_0$ vs Y - "exact" BLM method



F.G. Celiberto

EKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

pril 12th, 2016

Introduction OO Numerical analysis Theoretical setup

Results 0000000000 Conclusions

# $C_3/C_0$ vs Y - "exact" BLM method





F.G. Celiberto

FKL effects and central rapidity dependence in Mueller–Navelet iet production at 13 TeV LH

April 12th. 2016

# Conclusions

Comparison of predictions for  $C_0$  several  $R_{nm}$  ratios in full NLA BFKL approach

- Implementation of exact BLM method  $\xrightarrow{compared to}$  two different partial ones!
- Symmetric and asymmetric kinematics of detected jets

[F.G. C., D.Yu. Ivanov, B. Murdaca, A. Papa, (2015)]

- Central rapidity range exclusion...
- $\rightarrow\,$  in order to rule out from the final state a kinematics which could not be descripted by the BFKL approach
- effects on  $R_{nm}$  negligible

#### $\Downarrow \ \Downarrow \ \Downarrow$

We strongly suggest experimentalist collaborations to measure  $C_0$  by escluding central rapidity range...

- ◇ ...to discriminate BFKL from different theoretical approaches (HEF, fixed order DGLAP, ...)
- ◊ ...to discriminate from different BFKL approaches (*C<sub>n</sub>* representation, scale optimization method, ...)

BFKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC April

April 12th, 2016

# Thanks for your attention!!

 $C_2/C_1$  vs Y - "exact" BLM method



F.G. Celiberto

FKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LH

April 12th, 2016

 $C_3/C_2$  vs Y - "exact" BLM method



April 12th, 2016

F.G. Celiberto

-KL effects and central rapidity dependence in Mueller–Navelet iet production at 13 TeV L

# **BLM comparisons of** $C_2/C_1$ and $C_3/C_2$ vs $Y - y_{\text{max}}^{\text{C}} = 2.5$



## The "exact" BLM cross section

$$\begin{split} \mathcal{C}_{n}^{\text{BLM}} &= \frac{x_{J_{1}} x_{J_{2}}}{|\vec{k}_{J_{1}}||\vec{k}_{J_{2}}|} \int_{-\infty}^{+\infty} d\nu \ e^{(Y-Y_{0})\vec{a}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}})} \Big[ \chi(n,\nu) + \vec{a}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \Big( \hat{\chi}(n,\nu) + \frac{T^{\text{conf}}}{N_{c}} \chi(n,\nu) \Big) \Big] \\ &\times (\alpha_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}))^{2} c_{1}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}}) c_{2}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}}) \\ &\times \left[ 1 + \alpha_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \left\{ \frac{\bar{c}_{1}^{(1)}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})}{c_{1}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})} + \frac{\bar{c}_{2}^{(1)}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}})}{c_{2}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}})} + \frac{2T^{\text{conf}}}{N_{c}} \right\} \right], \end{split}$$

with the  $\mu_R^{\rm BLM}$  scale chosen as the solution of the following integral equation...

$$\begin{split} \mathcal{C}_{n}^{\beta} &\equiv \frac{x_{J_{1}} x_{J_{2}}}{|\vec{k}_{J_{1}}||\vec{k}_{J_{2}}|} \int_{-\infty}^{\infty} d\nu \left(\frac{s}{s_{0}}\right)^{\vec{n}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}})\chi(n,\nu)} \left(\alpha_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}})\right)^{3} \\ &\times c_{1}(n,\nu)c_{2}(n,\nu)\frac{\beta_{0}}{2N_{c}} \left[\frac{5}{3} + \ln \frac{(\mu_{R}^{\text{BLM}})^{2}}{Q_{1}Q_{2}} - 2\left(1 + \frac{2}{3}I\right) \right. \\ &\left. + \bar{\alpha}_{s}^{\text{MOM}}(\mu_{R}^{\text{BLM}}) \ln \frac{s}{s_{0}} \frac{\chi(n,\nu)}{2} \left(-\frac{\chi(n,\nu)}{2} + \frac{5}{3} + \ln \frac{(\mu_{R}^{\text{BLM}})^{2}}{Q_{1}Q_{2}} - 2\left(1 + \frac{2}{3}I\right)\right) \right] = 0 \end{split}$$

F.G. Celiberto

FKL effects and central rapidity dependence in Mueller–Navelet iet production at 13 TeV L

...which represents the condition that terms proportional to  $\beta_0$  in  $C_n$  disappear

$$\alpha^{\text{MOM}} = -\frac{\pi}{2T} \left[ 1 - \sqrt{1 + 4\alpha_s \left(\mu_R\right) \frac{T}{\pi}} \right] ,$$

with  $T = T^{\beta} + T^{\text{conf}}$ ,

$$T^{\beta} = -\frac{\beta_0}{2} \left( 1 + \frac{2}{3}I \right) ,$$
$$T^{\text{conf}} = \frac{C_A}{8} \left[ \frac{17}{2}I + \frac{3}{2} \left(I - 1\right)\xi + \left(1 - \frac{1}{3}I\right)\xi^2 - \frac{1}{6}\xi^3 \right] ,$$

where  $I = -2 \int_0^1 dx \frac{\ln(x)}{x^2 - x + 1} \simeq 2.3439$  and  $\xi$  is a gauge parameter.

2016

# The BLM cases (a) and (b) cross section

a) 
$$(\mu_R^{BLM})^2 = k_1 k_2 \exp \left[2\left(1 + \frac{2}{3}I\right) - f(\nu) - \frac{5}{3}\right] \sim 5^2 k_1 k_2$$

b) 
$$(\mu_R^{BLM})^2 = k_1 k_2 \exp\left[2\left(1+\frac{2}{3}I\right)-2f(\nu)-\frac{5}{3}+\frac{1}{2}\chi(\nu,n)\right] < (11.5)^2 k_1 k_2$$

$$\begin{split} \mathcal{C}_{n}^{\text{BLM},a} &= \frac{x_{J_{1}}x_{J_{2}}}{|\vec{k}_{J_{1}}||\vec{k}_{J_{2}}|} \int_{-\infty}^{+\infty} d\nu \ e^{(Y-Y_{0})\left[\vec{k}_{s}^{\text{MOM}}(\mu_{R,a}^{\text{BLM}})\chi(n,\nu) + (\vec{k}_{s}^{\text{MOM}}(\mu_{R,a}^{\text{BLM}}))^{2}\left(\vec{\chi}(n,\nu) + \frac{T^{\text{conf}}}{N_{c}}\chi(n,\nu) - \frac{\beta_{0}}{\delta N_{c}}\chi^{2}(n,\nu)\right)} \\ &\times (\alpha_{s}^{\text{MOM}}(\mu_{R,a}^{\text{BLM}}))^{2}c_{1}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})c_{2}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}}) \\ &\times \left[1 + \alpha_{s}^{\text{MOM}}(\mu_{R,a}^{\text{BLM}})\left\{\frac{\vec{c}_{1}^{(1)}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})}{c_{1}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})} + \frac{\vec{c}_{2}^{(1)}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}})}{c_{2}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}})} + \frac{2T^{\text{conf}}}{N_{c}}\right\}\right] \end{split}$$

$$\begin{split} \mathcal{C}_{n}^{\text{BLM,b}} &= \frac{x_{J_{1}} x_{J_{2}}}{|\vec{k}_{J_{1}}||\vec{k}_{J_{2}}|} \int_{-\infty}^{+\infty} d\nu \ e^{(Y-Y_{0}) \left[\vec{a}_{s}^{\text{MOM}}(\mu_{R,b}^{\text{BLM}})\chi(n,\nu) + (\vec{a}_{s}^{\text{MOM}}(\mu_{R,b}^{\text{BLM}}))^{2} \left(\vec{\chi}(n,\nu) + \frac{T^{\text{conf}}}{N_{c}}\chi(n,\nu)\right)\right]} \\ &\times (\alpha_{s}^{\text{MOM}}(\mu_{R,b}^{\text{BLM}}))^{2} c_{1}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}}) c_{2}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}}) \\ &\times \left[1 + \alpha_{s}^{\text{MOM}}(\mu_{R,b}^{\text{BLM}}) \left\{ \frac{\tilde{c}_{1}^{(1)}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})}{c_{1}(n,\nu,|\vec{k}_{J_{1}}|,x_{J_{1}})} + \frac{\tilde{c}_{2}^{(1)}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}})}{c_{2}(n,\nu,|\vec{k}_{J_{2}}|,x_{J_{2}})} + \frac{2T^{\text{conf}}}{N_{c}} + \frac{\beta_{0}}{4N_{c}}\chi(n,\nu) \right\} \right] \end{split}$$

F.G. Celiberto

Why BLM? MN jets - symmetric kinematics



3FKL effects and central rapidity dependence in Mueller–Navelet jet production at 13 TeV LHC

April 12th, 2016