A Lattice Calculation of Parton Distributions

Fernanda Steffens
DESY - Zeuthen

On behalf of the collaboration: C. Alexandrou, M. Constantinou, K. Cichy, V. Drach, K. Hadjiyiannakou, K. Jansen, C. Wiese

Main References

> X. Ji, "Parton Physics on a Euclidean Lattice," PRL 110 (2013) 262002.
$>$ X. Xiong, X. Ji, J.-H. Zhang and Y. Zhao, "One loop matching for parton distributions:Nonsinglet case,"PRD90 (2014) 014051.
$>$ H.-W. Lin, J.-W. Chen, S. D. Cohen and X. Ji, "Flavor Structure of the Nucleon Sea from Lattice QCD," Phys. Ver. D91 (2015) 054510.
> C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos, k. Hadjiyiannakou, K. Jansen, FS and C. Wiese, "A Lattice Calculation of Parton Distributions," arXiv:1504.07455.
$>$ J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin and J.-H Zhang, "Nucleon Helicity and Transversity Parton Distributions from Lattice QCD", arXiv:1603.066664.

Outline

- Quark distributions
- Quasi-quark distributions
- Relation between quark and quasi-quark distributions
- Calculation of the matrix elements of the quasi distributions
- Results

In the Bjorken limit: $\quad Q^{2}, \boldsymbol{v} \rightarrow \infty, x_{B}=\frac{Q^{2}}{2 P \cdot q}$ fixed

Parton distributions

$q\left(x_{B}, Q^{2}\right)$

Q^{2} dependence comes from perturbative QCD

Q^{2} not infinite but if large enough, the handbag diagram with pQCD corrections describes well the data

Light cone quark distributions

$$
\int_{0}^{1} d x_{B} x_{B}^{n-2} F_{i}\left(x_{B}, Q^{2}\right) \sim \sum_{j} c_{n}^{i, j}\left(Q^{2}\right)|P| o_{\mu_{1} \ldots \mu_{n}}^{i, j}|P| \frac{q^{\mu_{1} \ldots} q^{\mu_{n}}}{Q^{2 n}}
$$

$\langle P| 0_{\mu_{1} \cdots \mu_{n}}^{i}|P\rangle$

Moments of quark
Leading
Subleading ($\mathbf{P}^{2} / \mathbf{Q}^{2}$) distributions

Can not be disregarded if $\quad Q^{2} \sim P^{2}$

The x dependence of the distributions

Inverse Mellin transform

$$
a_{n}=\int d x x^{n-1} q(x) \quad q(x)=\frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d n x^{-n} a_{n}
$$

And taking

$$
\mu_{1}=\mu_{2}=\cdots=\mu_{n}=+
$$

$$
q(x)=\frac{1}{2 \pi} \int d \xi^{-} e^{-i x p^{+} \xi^{-}}\langle P| \bar{\psi}\left(\xi^{-}\right) \Gamma \mathcal{L}\left(\xi^{-}, 0\right) \psi(0)|P\rangle
$$

$$
\pm=e^{-i g \int_{0}^{\xi^{-}} d \eta^{-} A^{+}\left(\eta^{-}\right)}
$$

- Light cone correlations in the nucleon rest frame
- Equivalent to distributions in the IMF
- Light cone dominated: $\xi^{2}=t^{2}-z^{2} \sim 0$
- Not calculable on Euclidian Lattice as $t^{2}+z^{2} \sim 0$

Moments of quark distributions in terms of matrix element of local operators can be calculated in Lattice QCD

$$
\begin{gathered}
\int d x x^{n-1} q(x)=\langle N| \mathcal{O}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}|N\rangle \\
\mathcal{O}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}=\bar{\psi}\left(\gamma^{\left\{\mu_{1}\right.} i \overleftrightarrow{D}{ }^{\mu_{2}} \ldots i \overleftrightarrow{D} \overleftrightarrow{D}^{\left.\mu_{n}\right\}}\right) \frac{\tau^{a}}{2} \psi
\end{gathered}
$$

Example - isovector quark momentum fraction $(q(x)=u(x)-d(x))$:

$$
\langle x\rangle_{u-d}=\int d x x(q(x)+\bar{q}(x)) .
$$

- If a sufficient number of moments are calculated, one can reconstruct the x dependence of the distributions
- Hard to simulate high order derivatives on the lattice
- Nevertheless, the first few moments as well as charges can and have been calculated

Source: C. Alexandrou et al. 1405.5213

Quasi Distributions

Matrix elements

$$
\langle P| O^{\mu_{1} \mu_{2} \ldots \mu_{n}}|P\rangle=2 a_{n}^{(0)} \Pi^{\mu_{1} \mu_{2} \ldots \mu_{n}} \quad P=\left(P_{0}, 0,0, P_{3}\right) ;
$$

$$
\text { where } \quad \Pi^{\mu_{1} \mu_{2} \ldots \mu_{n}}=\sum_{j=0}^{k}(-1)^{j} \frac{(2 k-j)!}{2^{j}(2 k)!}\{g \ldots g P \ldots P\}_{k, j}\left(P^{2}\right)^{j}
$$

Setting $\quad \mu_{1}=\mu_{2}=\ldots=\mu_{2 k}=3$

$$
\Pi^{3 \ldots 3}=\sum_{j=0}^{k}(-1)^{j} \frac{(2 k-j)!}{2^{j}(2 k)!} \frac{(2 k)!}{2^{j} j!(2 k-2 j)!}(-1)^{j}\left(P_{3}^{2}\right)^{k-j}\left(M^{2}\right)^{j}
$$

$$
\langle P| O^{3 \ldots 3}|P\rangle=2 \tilde{a}_{2 k}^{(0)}\left(P_{3}\right)^{2 k} \sum_{j=0}^{k} \mu^{j}\binom{2 k-j}{j} \equiv 2 \tilde{a}_{2 k}\left(P_{3}\right)^{2 k}
$$

With

$$
\mu=M^{2} / 4\left(P_{3}\right)^{2}
$$

Defining: $\quad \tilde{a}_{n}\left(\Lambda, P_{3}\right)=\int_{-\infty}^{+\infty} x^{n-1} \tilde{q}\left(x, \Lambda, P_{3}\right) d x$

Mellin transformation implies in

$$
\tilde{q}\left(x, \Lambda, P_{3}\right)=\int_{-\infty}^{\infty} \frac{d z}{4 \pi} e^{-i z k_{3}}\langle P| \bar{\psi}(0, z) \gamma^{3} W(z) \psi(0,0)|P\rangle
$$

Parton momentum $\quad k_{3}=x P_{3}$

$$
\text { Wilson line } \quad W(z)=e^{-i g \int_{0}^{z} A_{3}\left(z^{\prime}\right) d z^{\prime}}
$$

- Nucleon moving with finite momentum in the z direction
- Pure spatial correlation
- Can be simulated on a lattice

What are these quasi-distributions? Do they have a partonic interpretation?

The light cone distributions:

Quasi distributions:
 \section*{Quasi distributions:}

$x=\frac{k^{+}}{P^{+}}$
$0 \leq x \leq 1$
Distributions can be defined in an Infinite Momentum Frame: $\mathrm{P}_{3}, \mathrm{P}^{+}$ goes to infinite
P_{3} large but finite

Some constituents can be moving backward or even with momentum greater than P_{3}
$x<0$ or $x>1$ is possible

Usual partonic interpretation is lost

Matching Condition

- Relating finite to infinite momentum
- Axial gauge $A_{3}=0$
- UV divergence regulate with $\left|k_{T}\right| \leq \Lambda \sim \frac{1}{a}$
- Renormalization scale μ

From pQCD. How to calculate them?

- We introduce a 4D hypercubic lattice:
* quark fields on lattice sites,
\star gluon fields on lattice links.
- Gauge invariant objects:
* Wilson loops,
* quarks and antiquarks connected with a gauge link.
- Lattice as a regulator:
\star UV cut-off - inverse lat. spac. a^{-1},
$\star \quad$ IR cut-off - inverse lat. size L^{-1}.
- Remove the regulator:
\star continuum limit $a \rightarrow 0$,
\star infinite volume limit $L \rightarrow \infty$.

Source: JICFuS, Tsukuba

The Wilson twisted mass fermion action for the 2 light (u, d quarks) is given in the so-called twisted basis by: [R. Frezzotti, P. Grassi, G.C. Rossi, S. Sint, P. Weisz, 2000-2004]

$$
S_{l}[\psi, \bar{\psi}, U]=a^{4} \sum_{x} \bar{\chi}_{l}(x)\left(D_{W}+m_{0, l}+i \mu_{l} \gamma_{5} \tau_{3}\right) \chi_{l}(x),
$$

where:

- D_{W} - Wilson-Dirac operator,
- $m_{0, l}$ and μ_{l} - bare untwisted and twisted light quark masses,
- the matrix τ^{3} acts in flavour space,
- $\chi_{l}=\left(\chi_{u}, \chi_{d}\right)$ is a 2-component vector in flavour space, related to the one in the physical basis by a chiral rotation with angle ω :

$$
\psi=e^{i \gamma_{5} \tau_{3} \omega / 2} \chi
$$

With maximal twist, $\omega=\pi / 2$, automatic $\mathrm{O}(a)$-improvement is achieved.

We want:

$$
h\left(P_{3}, z\right)=\langle P| \bar{\psi}(z) \gamma_{3} W_{3}(z, 0) \psi(0)|P\rangle
$$

Let :

$$
\begin{aligned}
& C^{3 \mathrm{pt}}(t, \tau, 0)=\left\langle N_{\alpha}(\vec{P}, t) \mathcal{O}(\tau) \bar{N}_{\alpha}(\vec{P}, 0)\right\rangle \\
& N_{\alpha}(\vec{P}, t)=\Gamma_{\alpha \beta} \sum_{\vec{x}} \mathrm{e}^{i \vec{P} \vec{x}} \epsilon^{a b c} u_{\beta}^{a}(x)\left(d^{b^{T}}(x) \mathcal{C} \gamma_{5} u^{c}(x)\right)
\end{aligned}
$$

$$
\mathcal{O}\left(z, \tau, Q^{2}=0\right)=\sum_{\vec{y}} \bar{\psi}(y+z) \gamma_{3} W_{3}(y+z, y) \psi(y)
$$

All to all propagators

Flavour structure: u-d

Extraction of the matrix elements

$$
\begin{array}{ll}
\frac{C^{3 p t}\left(t, \tau, 0 ; P_{3}\right)}{C^{2 p t}\left(t, 0 ; P_{3}\right)}= & \frac{-i P_{3}}{E} h\left(P_{3}, z\right), 0 \lll<t \\
8 a, 10 a & \text { Source - sink separation } \\
32^{3} \times 64 & \text { Lattice } \\
\beta=\frac{6}{g_{0}^{2}}=1.95 & a \approx 0.082 \mathrm{fm} \quad N_{f}=2+1+1
\end{array}
$$

Maximally twisted mass ensemble: $a \mu=0.0055 \Rightarrow m_{P S} \approx 370 \mathrm{MeV}$

$$
P_{3}=\frac{2 \pi}{L}, \frac{4 \pi}{L}, \cdots
$$

Configurations

Operators

Unpolarized $\quad \gamma_{3}$
Helicity $\quad \gamma_{3} \gamma_{5}$
Transversity $\gamma_{3} \gamma_{j} \gamma_{5}$

Matrix Elements

Real part

Imaginary part

HYP Smearing

It replaces a given gauge link with some average over neighbouring links, i.e. ones from hypercubes attached to it

Crude substitute for renormalization

Parameters

$$
\alpha_{s}=6 /(4 \pi \beta) \approx 0.245
$$

$\Lambda=1 / a \cong 2.5 \mathrm{GeV}$

$$
P_{3}=\frac{4 \pi}{L}
$$

What is the minimum Bjorken x ?

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

$$
\begin{array}{ll}
\text { Largest momentum } & |\vec{p}|=\frac{\pi}{a} \\
\text { Smallest momentum } & |\vec{p}|=\frac{2 \pi}{L}
\end{array}
$$

The injected momentum can be distributed at most between a/L lattice points

$$
x=\frac{k_{3}}{P_{3}} \rightarrow x_{\min }=\frac{1}{L / a}
$$

In terms of the injected momentum,

$$
x_{\min } \sim \frac{\Lambda_{Q C D}}{P_{3}}
$$

Present approach is valid at intermediate and large x : cut imposed by the Lattice spacing

$$
u(x)-d(x)
$$

Crossing relation: $\bar{q}(x)=-q(-x)$

$$
p_{0}=\frac{4}{v}
$$

$$
P_{3}=\frac{6 \pi}{L}
$$

$$
\Delta u(x)-\Delta d(x)
$$

Crossing relation: $\quad \Delta \bar{q}(x)=\Delta q(-x)$

$$
P_{3}=\frac{4 \pi}{L}
$$

$$
P_{3}=\frac{6 \pi}{L}
$$

$$
\delta u(x)-\delta d(x)
$$

Crossing relation: $\delta \bar{q}(x)=-\delta q(-x)$
$\Longrightarrow \quad \bar{d}>\delta \bar{u}$

$P_{3}=\frac{4 \pi}{L}$

$$
P_{3}=\frac{6 \pi}{L}
$$

Mixed setup scheme

Matrix elements calculated with $P_{3}=\frac{6 \pi}{L}$
Fourier transformation and matching using $\quad P_{3}=\frac{8 \pi}{L}$

Unpolarized distributions

Helicity Distributions

Only other result

Huey-Wen Lin et al., Phys. Rev. D91 (2015) 054510

J.-W. Chen et al., arXiv:1603.066664

$$
\begin{aligned}
& 24^{3} \times 48 \\
& a \approx 0.12 \mathrm{fm} \quad N_{f}=2+1+1 \\
& m_{P S} \approx 310 \mathrm{MeV}
\end{aligned}
$$

Uses highly improved staggered quarks and HYP smearing

Summary \& Outline

$>$ First attempts of a direct QCD calculation of quark distributions;
> Valuable information from intermediate to large x region;
> Asymmetric sea appears naturally. Imaginary part plays a fundamental role;
> Renormalization;
> Higher order correction;
> Implement Momentum Smearing: it will allow access to higher momentum;
> Compute at the physical mass - smaller number of configurations available at the moment;
$>$ Go to the continuum;
> Singlet distributions, gluon distributions etc
> Much to be done!

