"CTEQ-JLab"

The CJ15 parton distributions

arXiv:1602.03154

Alberto Accardi

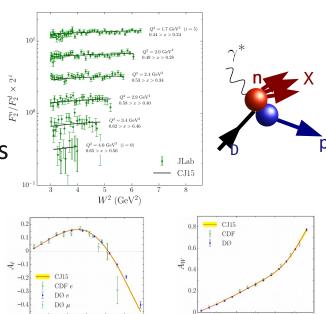
Hampton U. and Jefferson Lab

DIS 2016

DESY, Hamburg, April 12th, 2016

CJ15 at a glance

							Large-x treatment			
	JLab & BONUS	HER MES	HERA I+II	Tevatron new W,Z	LHC	ν+Α di-μ	Nucl.	HT TMC	Flex d	low-W DIS
CJ15 *	\checkmark	✓	\checkmark	\checkmark		X	√	✓	✓	\checkmark
CT14			[WG1]		\checkmark	\checkmark			\checkmark	
MMHT14			ддд	√ ¤¤	✓	√	✓			
NNPDF3.0					✓	✓		(√)		
JR14	\checkmark				✓	√	√	\checkmark		
ABM15					\checkmark	\checkmark	√	\checkmark		\checkmark
HERAPDF2.0			✓	Ħ						


^{*} NLO only ** No jet data * see 1503.05221 *** see 1508.06621 ** no reconstructed W

New in CJ15

- s-ACOT scheme for heavy flavors
- New data:
 - BONUS spectator tagged DIS on neutrons
 - HERA I+II combination, HERMES F2
 - High-statistics D0 charge asymmetries
- New off-shell nucleon treatment in deuteron targets (DIS and DY)
 - Parametrized vs. modeled → absorbs wave function uncertainty
 - Comparison to extraction from DIS on heavier targets

NUCL / HEP symbiosis:

- W and $Z \rightarrow$ constrain d-quark \rightarrow constrain deuteron corrections
- Abundant DIS deuteron data \rightarrow precise u/d flavor separation

CJ15 - data set

$$W^2 > 3.5 \text{ GeV}^2$$

 $\implies x \lesssim 0.85$

BONUS	$F_{\alpha}^{n}/F_{\alpha}^{d}$	DIS F_2 tagged
BOTTOR	- 2 / - 2	DIS σ

$$x \lesssim 0.65$$

HERA I+II

Drell-Yan

Z rapidity

jet

 γ +jet

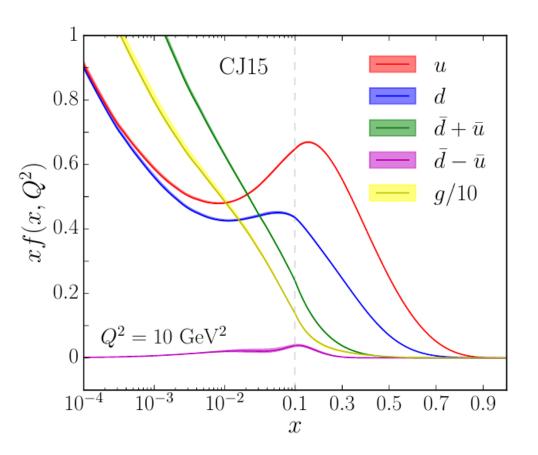
total total + norm χ^2 /datum

Observable

DIS F_2

Experiment

points

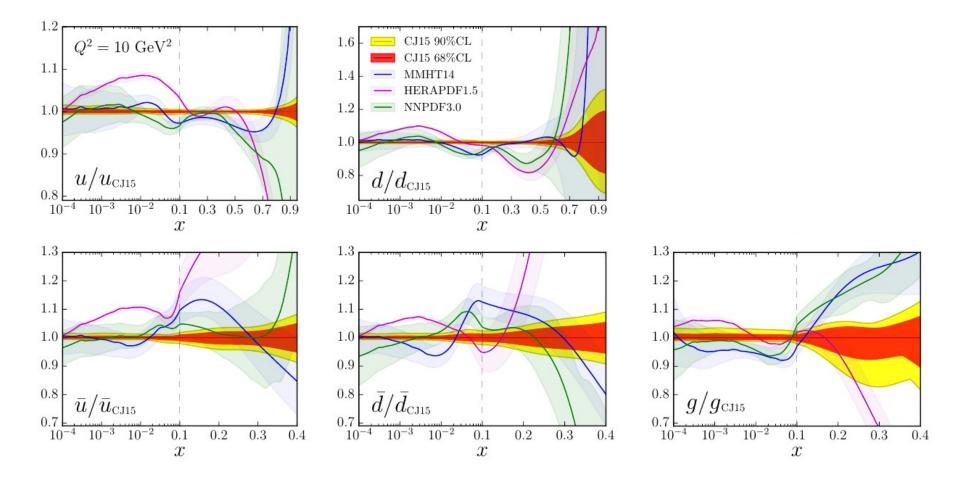

D0 A_{ℓ} : $x \lesssim 0.5$

D0 $A_W: x \leq 0.85$

		LO	NLO	NLO	NLO	NLO
				(OCS)	(no nucl)	(no nucl/D0)
BCDMS (p) [81]	351	430	438	436	440	427
BCDMS (d) [81]	254	297	292	289	301	301
SLAC (p) [82]	564	488	434	435	441	440
SLAC (d) [82]	582	396	376	380	507	466
NMC (p) [83]	275	431	405	404	405	403
NMC (d/p) [84]	189	179	172	173	174	173
HERMES (p) [86]	37	56	42	43	44	44
HERMES (d) [86]	37	51	37	38	36	37
Jefferson Lab (p) [87]	136	166	166	167	177	166
Jefferson Lab (d) [87]	136	131	123	124	126	130
Jefferson Lab (n/d) [21]	191	218	214	213	219	219
HERA (NC e^-p) [85]	159	325	241	240	247	244
HERA (NC e^+p 1) [85]	402	966	580	579	588	585
HERA (NC e^+p 2) [85]	75	184	94	94	94	93
HERA (NC e^+p 3) [85]	259	307	249	249	248	248
HERA (NC e^+p 4) [85]	209	348	228	228	228	228
HERA (CC e^-p) [85]	42	44	48	48	45	49
HERA (CC e^+p) [85]	39	56	50	50	51	51
E866 (pp) [29]	121	148	139	139	145	143
E866 (pd) [29]	129	207	145	143	158	157
ry CDF (e) [88]	11	11	12	12	13	14
DØ (μ) [17]	10	37	20	19	29	28
DØ (e) [18]	13	20	29	29	14	14
CDF (W) [89]	13	16	16	16	14	14
DØ (W) [19]	14	39	14	15	82	
CDF (Z) [90]	28	100	27	27	26	26
DØ (Z) [91]	28	25	16	16	16	16
CDF (run 2) [92]	72	33	15	15	23	25
DØ (run 2) [93]	110	23	21	21	14	14
DØ 1 [94]	16	17	7	7	7	7
DØ 2 [94]	16	34	16	16	17	17
DØ 3 [94]	12	34	25	25	24	25
DØ 4 [94]	12	76	13	13	13	13
	4542	5894	4700	4702	4964	4817
		6022	4708	4710	4972	4826
		1.33	1.04	1.04	1.09	1.07

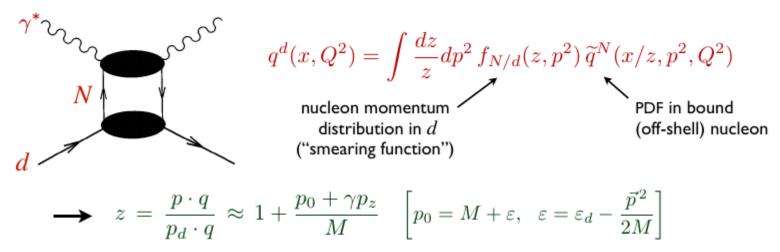
 χ^2

CJ15 - PDFs


- Hessian error analysis
 - Correlated errors where available
- Error bands displayed for

$$\Delta \chi^2 = 2.71$$

(90% confidence level in a perfect, Gaussian world)


- \square NLO fit gives $\chi^2/{
 m datum} = 1.04$
- LO fit much worse cannot accommodate Q² dependence of data

CJ15 vs. others

Nuclear corrections

At large x, DIS dominated by incoherent scattering from individual nucleons

momentum fraction of d carried by N

- \longrightarrow at finite Q^2 , smearing function depends on $\gamma = \sqrt{1 + 4M^2x^2/Q^2}$
- \bigcirc Offshell expansion; parametrize first order coefficient, x_1 fixed with valence sum rule

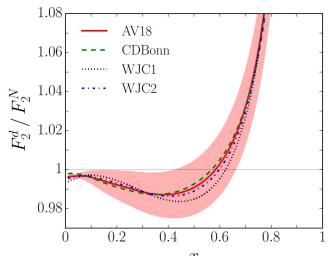
$$\widetilde{q}^{N}(x, p^{2}) = q^{N}(x) \left[1 + \frac{(p^{2} - M^{2})}{M^{2}} \delta q^{N}(x) \right]$$

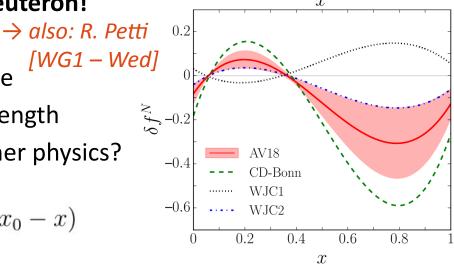
$$\delta q^{N} = C_{N}(x - x_{0})(x - x_{1})(1 + x - x_{0}) \qquad \int_{0}^{1} dx \, \delta q^{N}(x) \Big(q^{N}(x) - \bar{q}^{N}(x) \Big) = 0$$

NUCL / HEP symbiosis

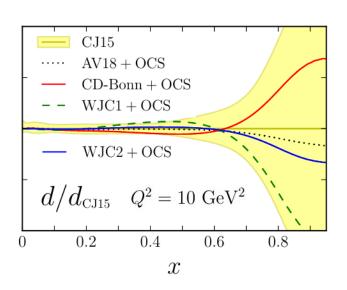
Observable	Experiment	# points				χ^2	
			LO	NLO	NLO	NLO	
					(OCS)	(no nucl)	
DIS F_2	BCDMS (p) [81]	351	430	438	436	440	
	BCDMS (d) [81]	254	297	292	289	301	
	SLAC (p) [82]	564	488	434	435	441	
	SLAC (d) [82]	582	396	376	380	507	
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	218	214	213	219	
$W/{\rm charge}$ asymmetry	CDF(e)[88]	11	11	12	12	13	
	DØ (μ) [17]	10	37	20	19	29	
	$D\emptyset(e)[18]$	13	20	29	29	14	
	CDF (W) [89]	13	16	16	16	14	
	$D\emptyset(W)$ [19]	14	39	14	15	82	
Z rapidity	CDF (Z) [90]	28	100	27	27	26	
	$D\emptyset(Z)$ [91]	28	25	16	16	16	
			:		•		
$\chi^2/{ m datum}$			1.33	1.04	1.04	1.09	

NUCL / HEP symbiosis

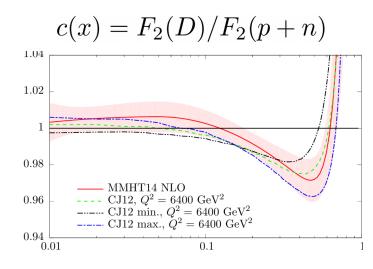

Observable	Experiment	# points		χ^2		
			LO	NLO	NLO	NLO
					(OCS)	(no nucl)
DIS F_2	BCDMS (p) [81]	351	430	438	436	440
	BCDMS (d) [81]	254	297	292	289	301
	SLAC (p) [82]	564	488	434	435	441
	SLAC (d) [82]	582	396	376	380	507
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	218	214	213	219
W/charge asymmetry	CDF (e) [88]	11	11	12	12	13
	$D\emptyset$ (μ) [17]	10	37	20	19	29
	$D\emptyset(e)$ [18]	13	20	29	29	14
	CDF(W)[89]	13	16	16	16	14
	$D\emptyset(W)$ [19]	14	39	14	15	82
Z rapidity	CDF(Z)[90]	28	100	27	27	26


- ☐ Ignoring nuclear dynamics, SLAC(d) and D0(W) pull d quark in opposite directions
 - D0 (W) data determine nuclear corrections !!
 - other asymmetries inconclusive by themselves
 - BONUS data validate DO(W) analysis

Nucleon off-shellness constrained by D0 data (!)

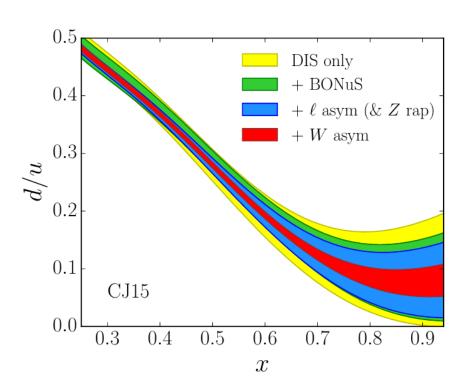

- The "wrong" nuclear corrections creates tension between DIS(D) and W asym
 - The fits then choses the "right" one
- Deuteron to nucleon "EMC" ratio D/(p+n)
 - Stable w.r.t. choice of nucleon w.fn.
 (WJC1 disfavored χ²-wise)
 - No evidence for antishadowing
- Off shell correction first time in Deuteron!
 - Good statistical precision!
 - Magnitude compensates for wave function's missing / excessive strength
 - Physical result or fitting away other physics?

$$\delta f^N = C(x - x_0)(x - x_1)(1 + x_0 - x)$$


Cross checks

- Fit with with a 1-parameter model of the off-shell effects
 - Obtain comaptible d quarks

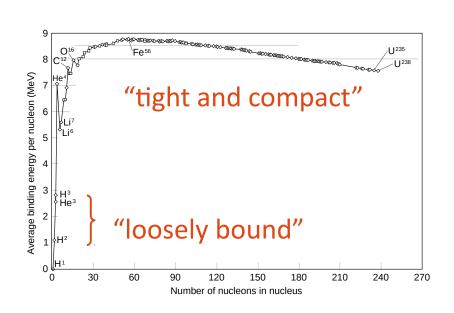
OCS = Off-shell Covariant Spectator model


- MMHT14 parametrize the whole nuclear effect
 - Obtain similar result
 - (but cannot explore the nuclear dynamics)

MMHT14, EPJ C75 (2015) 204

What fits what?

■ Large x > 0.3:

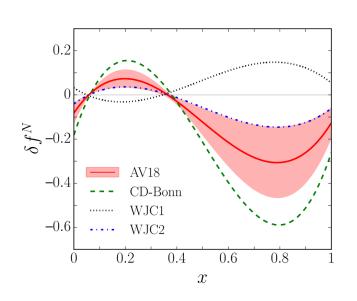

- D0's W-asymmetry determines the d-quark
- SLAC(d)'s statistical power used to fit the off-shell function

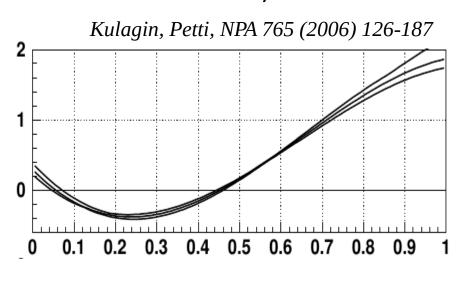

■ Moderate x < 0.3:</p>

SLAC(d) enables precise d/u flavor separation

Nuclear physics output

- QUESTION: Does the nuclear environment affect the off-shell behavior of a nucleon?
 - For example, partial deconfinment [Close, Jaffe, Roberts (1985)]




$$\delta q = \delta q(x; \mathbf{A}) ??$$

Nuclear physics output

Compare to Kulagin-Petti fit to e+A collisions

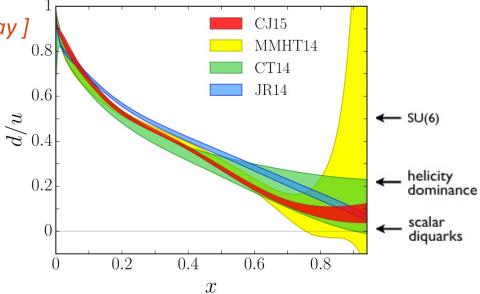
Same functional form (but different normalization)

- Different shape and size
 - \rightarrow no nuclear universality ?? δf_N
 - → too hard nuclear spectral function at large momentum ??

Hadronic physics output

→ see also: E.Nocera [WG1 – Wednesday]

d/u ratio at high x of interest for nonperturbative models of nucleon


→ CJ15:

more flexible parametrization

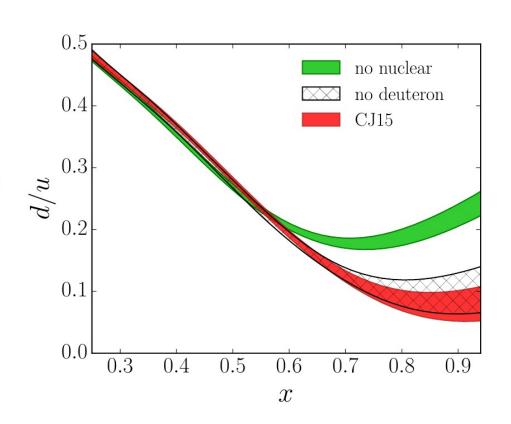
$$d \rightarrow d + b x^{c} u$$

allows finite, nonzero x = 1 limit

(standard PDF form gives 0 or ∞ unless $a_2^d = a_2^u$)

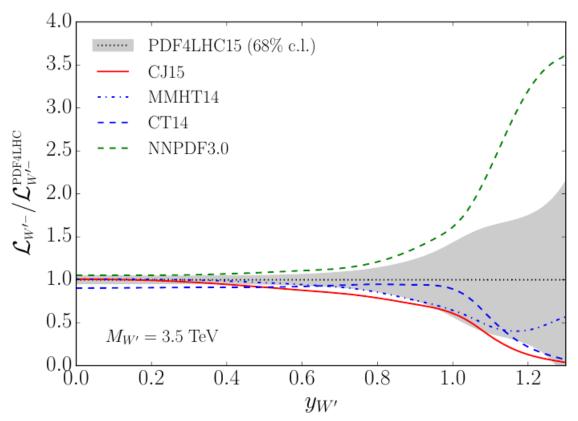
MMHT14: fitted deuteron corrections standard d parametrization
→ "UNDERCONSTRAINED"

JR14 (and ABM12):


Similar deuteron corrections standard *d*; no lepton/W asym. → "OVERCONSTRAINED"

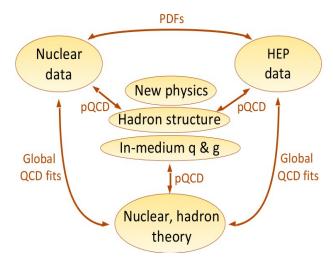
CT14:
$$\beta_u = \beta_d \implies d/u$$
 finite

No nuclear corrections

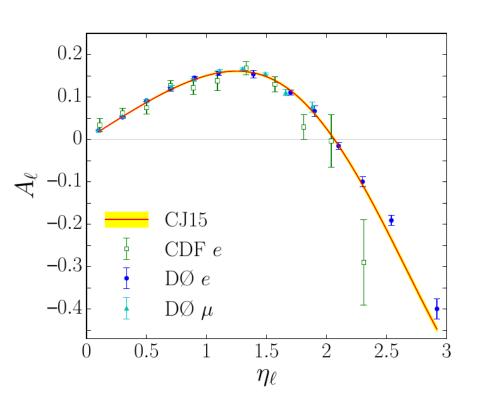

Very important:

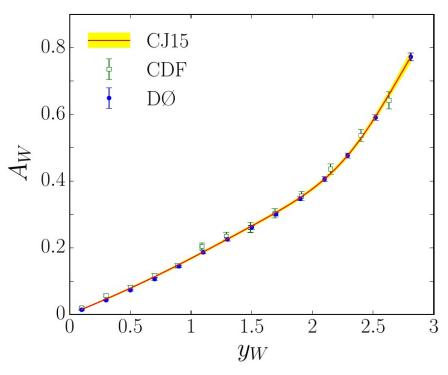
- deuterium data, and proper treatment of nuclear corrections, are important for accuracy and precision of d/u determination at x > 0.6
- → Same will be true also for dbar/ubar at large x

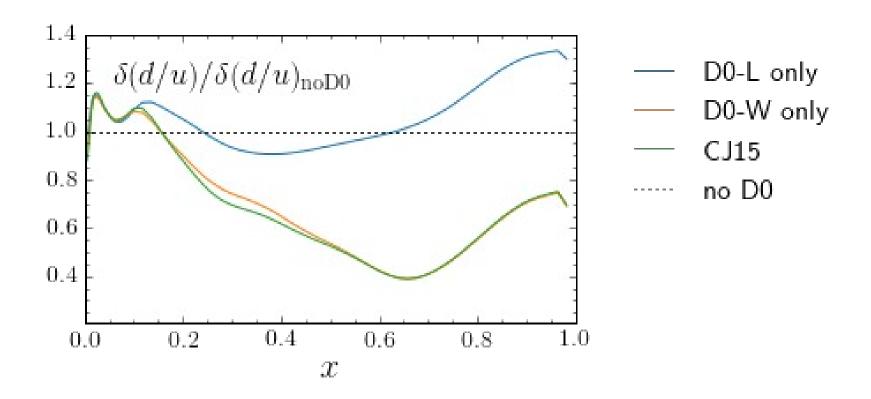
BSM physics output


→ see also: R.Placakyte [WG1 – Tue]

$$\mathcal{L}_{W'^{-}} = \frac{2\pi G_F}{3\sqrt{2}} x_1 x_2 \left[\cos^2 \theta_C(\bar{u}(x_2)d(x_1) + \bar{c}(x_2)s(x_1)) + \sin^2 \theta_C(\bar{u}(x_2)s(x_1) + \bar{c}(x_2)d(x_1)) \right] + (x_1 \leftrightarrow x_2)$$

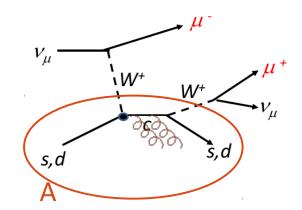

Conclusions


- Entering a new precision era in large-x PDFs
 - Most groups are finally on board
 - Much to be learned from each other
 - New data (now and in the future), new fitting approaches
 - Conquering nuclear corrections
 - Time for threshold resummation ?
- High-energy and nuclear physics need to work together!
 - Progress in hadron / nuclear structure
 - Precision PDFs for BSM searches


Backup

W-lepton and W asymmetry at Tevatron

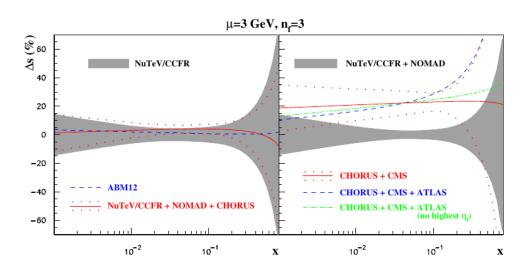
W-lepton and W asymmetry at Tevatron

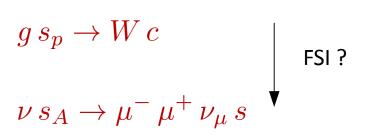


Strangeness and strangeness asymmetry

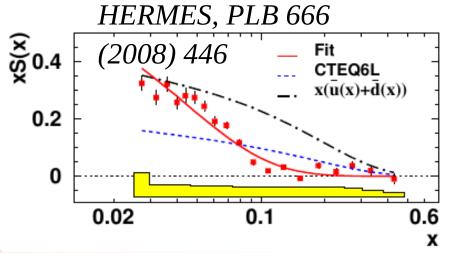
$$s^{\pm}(x) = s(x) \pm \bar{s}(x)$$
 $[s^{\pm}] = \int_0^1 dx \, x \, s^{\pm}(x)$

- $lue{}$ In pre-LHC fits, mostly constrained by v+A data
 - CCFR inclusive DIS
 - NuTeV muon pair production
 - NOMAD and CHORUS



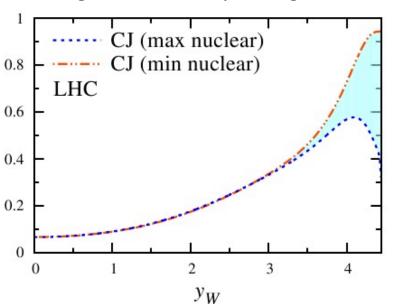


- Initial state nuclear wave-function mods
 - Partly under control using nPDFs
 - But: double counting!! → either use in nPDF or in PDF fits!
- Final state propagation of the charm quark / D meson
 - Not under theoretical / phenomenological control (cf. heavy quark "puzzle" in A+A at RHIC, LHC)

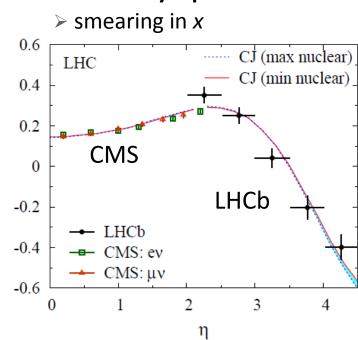

Strange tensions

Alekhin et al., arXiv:1404.6469

- Kaons in e+p at HERMES
 - But.. fragmentation functions uncertainty



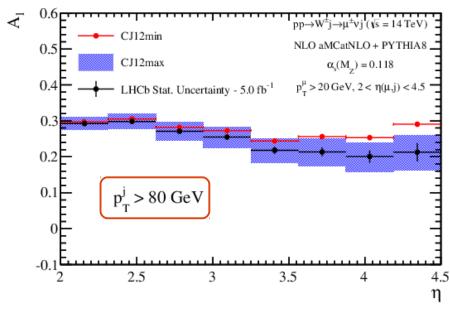
W charge asymmetry at LHC

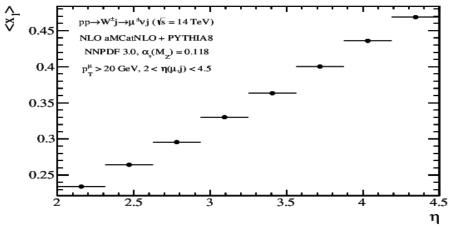

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

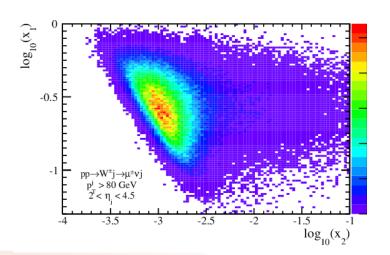
Directly reconstructed W:

highest sensitivity to large x

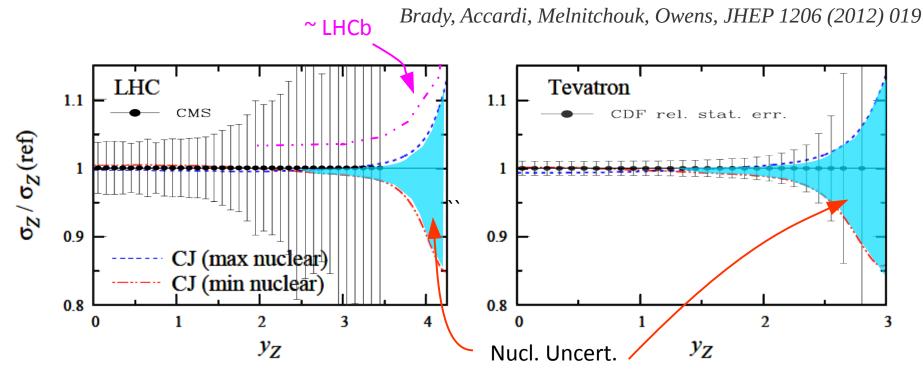
From decay lepton W \rightarrow l+v:




Would be nice to reconstruct W at

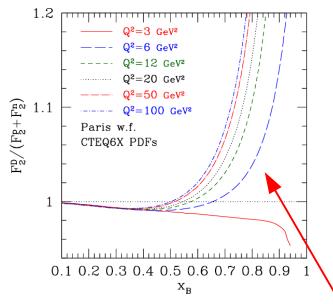

- LHCb But I am told "too many holes"...
- RHIC how high in rapidity?
- AFTER@LHC ??

W+c at LHCb

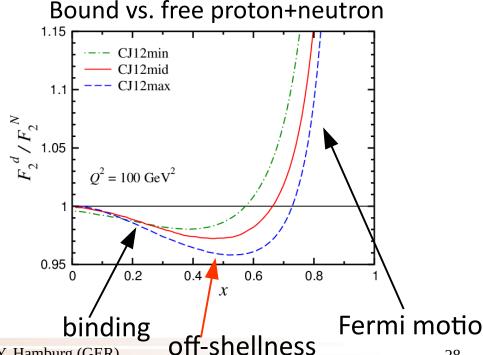

Farry and Gauld, PRD 93 (2016) 014008

Z rapidity distribution

- Direct Z reconstruction is unambiguous in principle, but:
 - Needs better than 5-10% precision at large rapidity
 - Experimentally achievable?
 - At LHCb? RHIC? AFTER@LHC?
 - Was full data set used at Tevatron?


Appendix: Nuclear corrections

CJ12 Deuteron corrections


- No free neutron! Best proxy: Deuteron
 - Parton distributions (to be fitted)
 - nuclear wave function (AV18, CD-Bonn, WJC1, ...)
 - Off-shell nucleon modification (model dependent)

Theoretical uncertainty

$$F_{2d}(x_B, Q^2) = \int_{x_B}^{A} dy \, \mathcal{S}_A(y, \gamma) F_2^{TMC + HT}(x_B/y, Q^2) \left(1 + \frac{\delta^{off} F_2(x)}{F_2(x)} \right)$$

Strong Q^2 dependence at large x!

DIS 2016, DESY, Hamburg (GER)

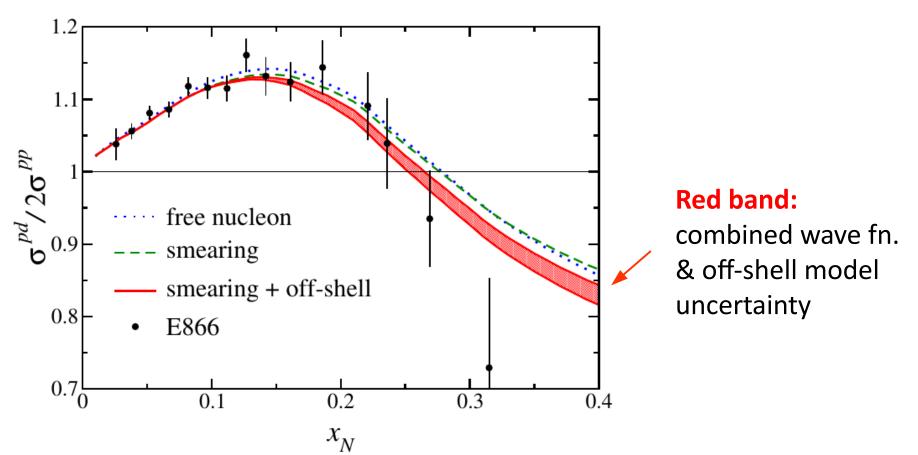
28

Nuclear corrections for p+d DY

Ehlers, AA, Brady, Melnitchouk, PRD90 (2014)

Same nuclear model for DY cross sections

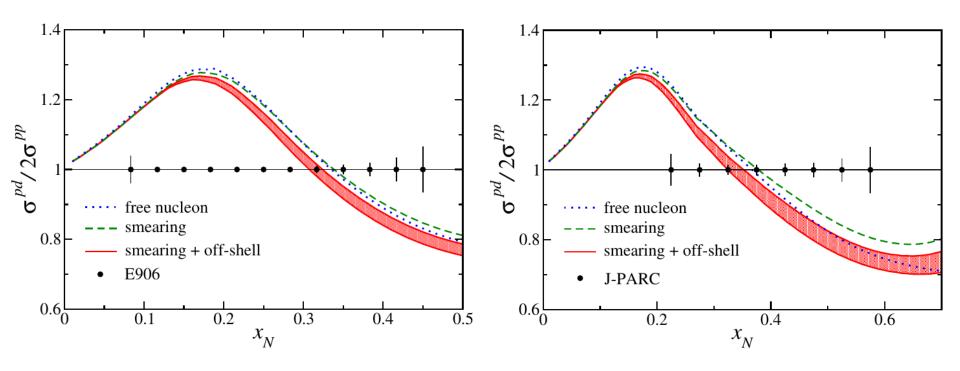
$$\sigma^{pd}(x_p,x_d) = \sum_N \int_{x_d}^1 \frac{dz}{z} \Big[f(z) + f^{(\text{off})}(z) \, \delta \sigma^{pN} \Big(x_p, \frac{x_d}{z} \Big) \Big] \, \sigma^{pN} \Big(x_p, \frac{x_d}{z} \Big)$$
 Same as in DIS (in Bj. limit)


- Off-shell model extended to sea quarks and gluons
 - Spectral function in suitable spectator model

$$\widetilde{q}(x, p^2) = \int dw^2 \int_{-\infty}^{\hat{p}_{\text{max}}^2} d\hat{p}^2 D_q(w^2, \hat{p}^2, x, p^2)$$

☐ Pion-cloud effects also studied *Kamano*, *Lee*, *PRD86* (2012)

Nuclear corrections...


Ehlers, AA, Brady, Melnitchouk, PRD90 (2014)

Off-shell corrections help makes dbar-ubar stay positive

Future DY reaches into large-x

Ehlers, AA, Brady, Melnitchouk, PRD90 (2014)

- ☐ E906/Sea Quest: off-shell effects even more important
- J-PARC: can cross-check nuclear smearing vs. DIS

Appendix: Large-x data

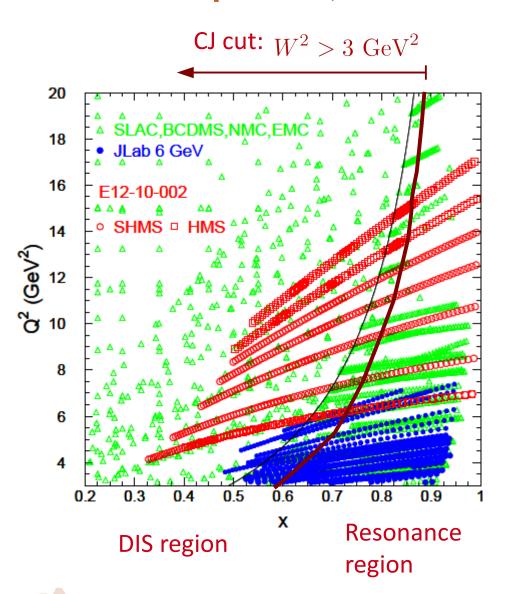
New Large-x data: a partial list

- DIS data minimally sensitive to nuclear corrections
 - DIS with slow spectator proton (BONUS / BONUS 12)
 - Quasi-free neutrons
 - ³He/³H ratios (Marathon)

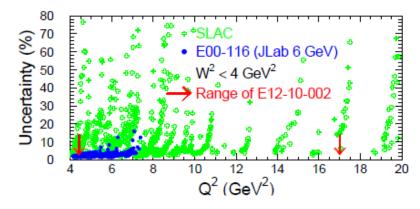
Jlab

- Data on free (anti)protons, sensitive to d
 - e+p: parity-violating DIS **HERA** (e^+ vs. e^-), **EIC**, **LHeC**
 - $\nabla + p$, $\nabla + p$: ShiP, ELBNF Near Detector, MINERVA
 - p+p, p+p at large positive rapidity

• W charge asymmetry, Z rapidity distribution


LHCb(?) RHIC!!
AFTER@LHC

- "Drell-Yan" data
 - Dimuons: E906, J-PARC (?)
 - p+d at large <u>negative</u> rapidity dileptons; W, Z
 - Sensitive to nuclear corrections, cross-checks e+d

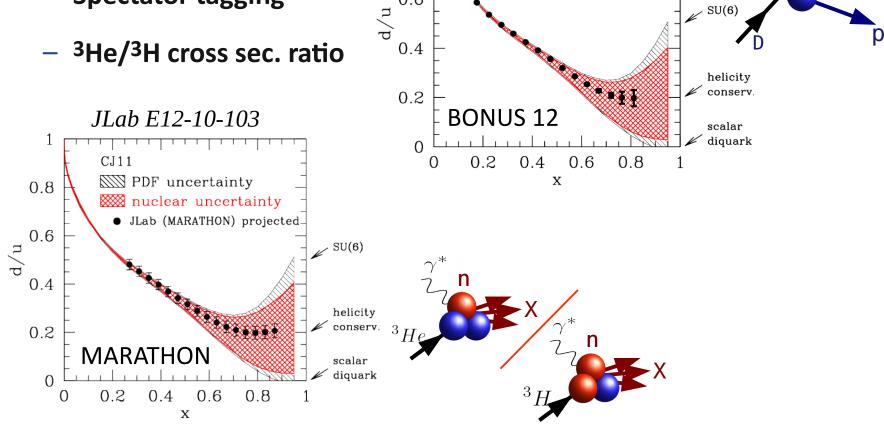

RHIC ?? AFTER@LHC

•••

JLab 12 - proton, deuteron structure functions

Jlab12 experiment E12-10-002

☐ JLab 12 GeV


- More than double Q² range
- Similar precision as JLab 6 GeV (largely improve cf. SLAC)

JLab 12: Quasi-free neutrons for tomorrow

8.0

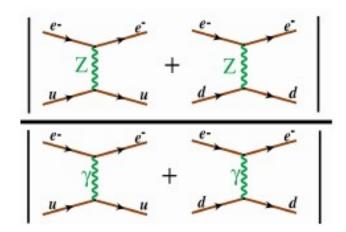
0.6

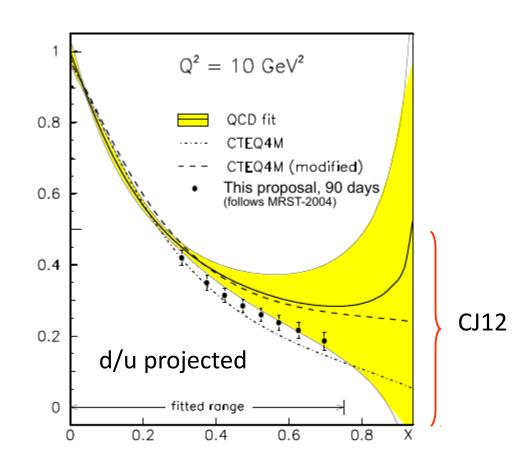
- Nuclear corrections largely cancel:
 - Spectator tagging

JLab E12-06-113

PDF uncertainty

nuclear uncertaintyBONUS12 projected

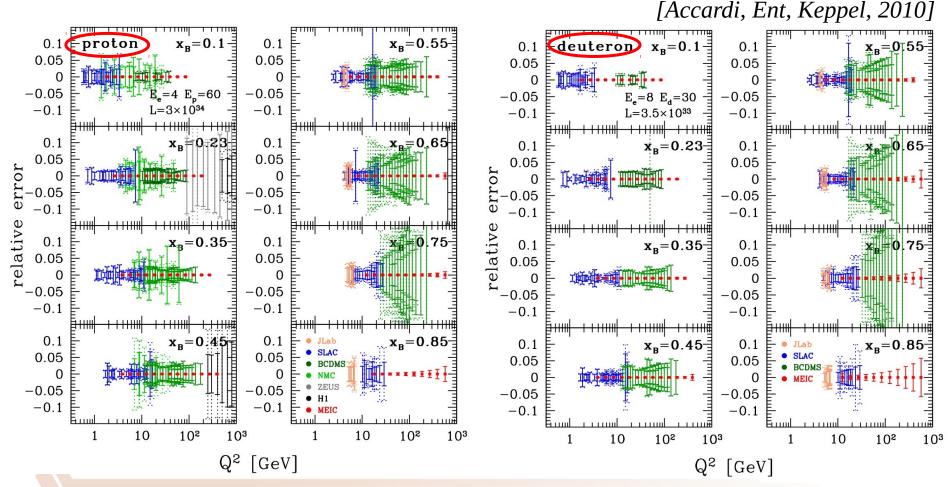

CJ11


JLab 12: Parity-Violating DIS

Jlab12 experiment E12-10-007

■ Longitudinally polarized electrons → PV asymmetry

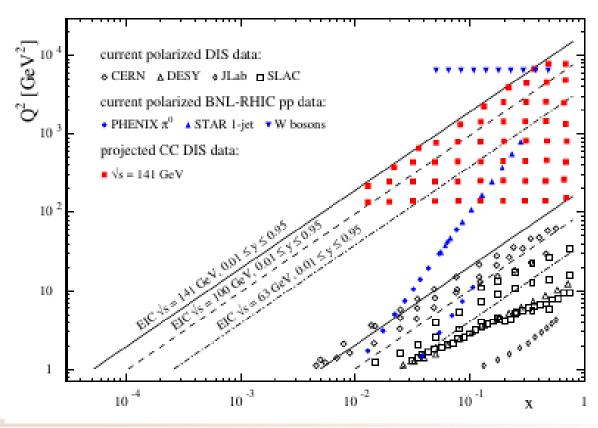
$$A_{LR} = A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\tilde{A}_Z}{A_\gamma}$$



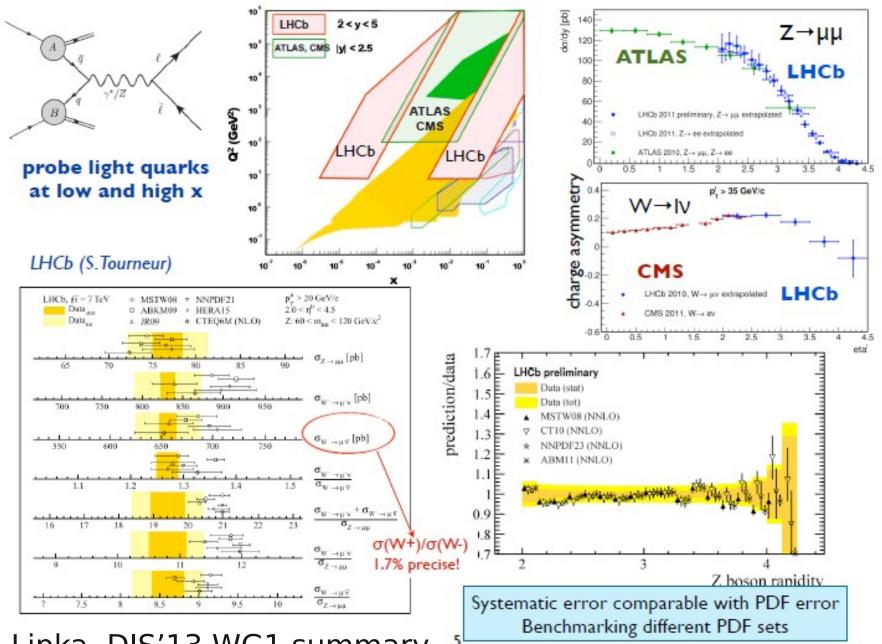
At the EIC

Neutral current DIS

- MEIC $\sqrt{s} = 31 \text{ GeV (ca. 2010)}$
- Pseudo data using "CTEQ6X" fits, L=230 (35) fb⁻¹



At the EIC


Charged current DIS

- plot for polarized scattering, similar for unpolarized
- Not optimized at large-x: likely to add a bin around x = 0.85

[Aschenauer et al, 2013]

Constraints from the LHC: Electroweak Boson Production

K. Lipka, DIS'13 WG1 summary