Constraining Self-interacting Dark Matter: Hints of the Dark force and Beyond

Oindrila Ghosh

The Institute of Mathematical Sciences, Chennai

oindrila@imsc.res.in

May 26, 2015

Overview

Motivation

- Cusp vs. Core Anomaly
- Missing Satellites Problem
- "Too big to fail"

3 Model

- Description
- Classical, Born and resonant regime

4 Constraining the parameter space

- Phenomenology
- Parameter space
- Cluster collisions
- Making a case for self-interaction

Conclusion

WIMP dark matter

Typical weak-scale cross section for self-scattering

 $\sigma_{T} \sim 10^{-36} \text{cm}^2$

DM elastic scattering cross section must be

 $\sigma_T \sim 1 cm^2 (m_X/g) \approx 2 x 10^{-24} cm^2 (m_X/GeV)$

Weak-scale cross section too small to affect structure formation

Invoke strong self-interaction in dark matter particles?

Cusp/Core Anomaly

Collisionless cold dark matter halos in dwarfs

Appears to be centrally cuspy in simulations Observations exhibit cored profiles

Image of galaxy F568-3 superposed on Via Lactea CDM simulation of MW-sized halo

$\mathsf{Cusp}/\mathsf{Core}\ \mathsf{Anomaly}$

- Galactic rotation curves
- Cluster observations

Prospective resolutions

• Include baryonic feedback mechanisms that steepen the inner profile

Weinberg et al., 2013

New DM physics (SIDM, WDM)

Cusp/Core Anomaly

Self-interaction in collisional DM makes halos rounder, less dense at center

From simulations by Rocha et al., 2013

Missing Satellites Problem

Simulations predict orders of magnitude of more dwarf galaxies than observation

Yniguez et al. (2013), Garrison-Kimmel et al. (2014)

Missing Satellites Problem

Bullock (2013)

Potential solution

- Star formation suppressed due to photo-ionization and heating. Up to 5-20 times of the known dwarfs may have gone undetected because of luminosity bias, limited sky coverage, surface brightness limits etc.
- Tidal stripping and supernova feedback may have destroyed the subhaloes
- New DM physics (SIDM, WDM)

"Too Big to Fail"

Problem within the Milky Way

Subhaloes too massive to host observed bright satellites!

Garrison-Kimmel et al. 2014 (left) & figure from Via Lactea II and

Oindrila Ghosh (IMSc)

May 26, 2015 10 / 37

Problem is not limited to the Milky Way!

Extragalactic observations

Twofold trouble with the hosts

- Dwarfs are hosted by less massive halos than predicted by CCDM simulations
- If smaller halos are allowed to host them observations come up with higher galactic number density

Three problems are linked: A Common Resolution?

"Too Big to Fail"

Hosts are too massive to be accommodated into the galactic rotation curve

ALFALFA Experiment, Papastergis et al., 2015

Oindrila Ghosh (IMSc)

SIDM: Dark Force and Beyond

Possible way-outs

- Feedback from star formation and supernovae, ram pressure and tidal stripping in hosts
- Uncertainty in MW halo mass
- Statistical uncertainties in formation of MW-sized halos
- New DM physics

Baryonic feedback mechanisms are not enough to fix the abundance of halos *or* the galactic rotation curves (projected masses)

Time to look into new possibilities on the dark matter front?

What are the viable routes out of the messy small-scale anomalies?

Collisional self-interacting DM candidate: e.g. hidden dark matter (with dark gauge boson as mediators: scalars, dark photons)

Warm dark matter candidate: e.g. decaying 7.1 keV sterile neutrinos

Both offer resolutions to problems with the small-scale structure without violating astrophysical bounds

Dark Matter Candidate and Mediators

Yukawa potential at work:

$$V(r) = \pm \frac{\alpha_{\chi}}{r} e^{\frac{-m_{\phi}}{r}}$$

Dark fine structure constant $\alpha_X=g_X^2/4\pi$

Interactions

vector mediator scalar mediator

Scalar interactions: purely attractive Vector interactions: both attractive and repulsive

Transfer Cross Section

 $\sigma_T = \int d\Omega (1 - \cos \theta) \frac{d\sigma}{d\Omega}$

- Weighted by fractional longitudinal momentum transfer
- Regulates forward scattering divergence

Viscosity Cross Section

 $\sigma_V = \int d\Omega \sin^2 \theta \frac{d\sigma}{d\Omega}$

- Weighted by energy transfer in the transverse direction
- Regulates forward and backward scattering divergence evenly

Difference between σ_T and σ_V will be small Angular dependence in full scale N-body simulation is taken care of through angular information in $\frac{d\sigma}{d\Omega}$ σ_T widely used in DM literature

The Born limit: $\frac{\alpha_X m_X}{m_\phi} \ll 1$

Cross section calculated perturbatively in α_X

For both attractive and repulsive potential

$$\sigma_T^{Born} = \frac{8\pi \alpha_X^2}{m_X^2 v^4} (\log(1 + \frac{m_X^2 v^2}{m_\phi^2}) - \frac{m_X^2 v^2}{m_\phi^2 + m_X^2 v^2})$$

Differential cross section:
$$\frac{d\sigma}{d\Omega} = \frac{\alpha_X^2 m_X^2}{(m_{\phi}^2 + m_X^2 v^2 (1 - \cos\theta)/2)^2}$$

Classical regime

The classical limit: $\frac{m_X \upsilon}{m_\phi} \gg 1$ Cross-sections computed in the non-perturbative regime

For attractive potential

$$\sigma_T^{clas} = \begin{cases} \frac{4\pi}{m_\phi^2} \beta^2 \ln(1+\beta^{-1}) & \beta \lesssim 10^{-1} \\ \frac{8\pi}{m_\phi^2} \beta^2 / (1+1.5\beta^{1.65}) & 10^{-1} \lesssim \beta \lesssim 10^3 \\ \frac{\pi}{m_\phi^2} (\ln\beta + 1 - \frac{1}{2}\ln^{-1}\beta)^2 & \beta \gtrsim 10^3 \end{cases}$$

For repulsive potential

$$\sigma_T^{clas} = \begin{cases} \frac{2\pi}{m_\phi^2} \beta^2 \ln(1+\beta^{-2}) & \beta \lesssim 1\\ \frac{\pi}{m_\phi^2} (\ln 2\beta - \ln \ln 2\beta)^2 & \beta \gtrsim 1 \end{cases}$$

With $\beta \equiv \frac{2\alpha_X m_{\phi}}{m_X v^2}$

.

Differential cross section

For $\beta \lesssim 1$

•
$$\frac{d\sigma}{d\Omega} \approx \frac{\sigma_T}{4\pi}$$

• Remains approximately constant

For $\beta\gtrsim 1$

•
$$\frac{d\sigma}{d\Omega} \approx \frac{\alpha_X^2}{m_X^2 \upsilon^4 \sin^4 \frac{\theta}{2}}$$

• Approaches Rutherford scattering formula

Onset of both quantum mechanical and non-perturbative effects

A significant chunk of the parameter space!

No analytic formula for σ_T

Resonant regime

 $\sigma_{\mathcal{T}}$ computed by solving the Schroedinger equation using partial wave analysis

Velocity dependence within the resonant regime

Curves parametrized with $\alpha_X m_X/m_\phi$

For attractive potential

Resonant regime

For repulsive potential

Tulin et al., 2013

The analytic path

The Hulthen potential

$$V(r) = \pm rac{lpha_X \delta e^{-\delta r}}{1 - e^{-\delta r}}$$

Serves as an excellent approximation to the Yukawa potential

Resonant regime

The analytic path

Transfer cross-section in Hulthen potential:

$$\sigma_T^{Hulthen} = rac{16\pi}{m_X^2 v^2} sin^2 \delta_0$$

Differential cross-section:

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_T}{4\pi}$$

where

$$\delta_0 = \arg(\frac{i\Gamma(\frac{im_X \upsilon}{\kappa m_{\phi}})}{\Gamma(\lambda_+)\Gamma(\lambda_-)})$$

with $\kappa\approx\!\!1.6$ and

$$\lambda_{\pm} \equiv \begin{cases} 1 + \frac{im_X \upsilon}{2\kappa m_{\phi}} \pm \sqrt{\frac{\alpha_X m_X}{\kappa m_{\phi}} - \frac{m_X^2 \upsilon^2}{4\kappa^2 m_{\phi}^2}} & \text{attractive} \\ 1 + \frac{im_X \upsilon}{2\kappa m_{\phi}} \pm i \sqrt{\frac{\alpha_X m_X}{\kappa m_{\phi}} + \frac{m_X^2 \upsilon^2}{4\kappa^2 m_{\phi}^2}} & \text{repulsive} \end{cases}$$

Oindrila Ghosh (IMSc)

■ ▶ ◀ ■ ▶ ■ ∽ � ় ↔ May 26, 2015 23 / 37

The resonant regime

A comparison between the numerical and analytic results

Oindrila Ghosh (IMSc)

SIDM: Dark Force and Beyond

The resonant regime

Tulin et al., 2013

Transfer cross-section

Cross section averaged over relative velocities of incoming DM $\langle \sigma_T \rangle = \int \frac{d^3 \upsilon}{(2\pi \upsilon_0^2)^{3/2}} e^{-\frac{1}{2}\upsilon^2/\upsilon_0^2} \sigma_T(\upsilon)$

Uses exponential weight

 $\upsilon_0 \longrightarrow \mathsf{most}$ probable velocity

Similarly, the thermally averaged cross section in non-relativistic limit is $\langle \sigma_{an} \upsilon \rangle = \int \frac{d^3 \upsilon}{(2\pi \upsilon_0^2)^{3/2}} e^{-\frac{1}{2}\upsilon^2/\upsilon_0^2} \sigma_{an} \upsilon$

 $v_0 \longrightarrow \sqrt{2/x_X}$

where $x_X = m_X/T_X$ and DM temperature T_X is $T_X = T^2/T_{kd}$

Phenomenology

Light mediators \longrightarrow Enhancement

Thermally averaged enhanced cross section

Multiply the Sommerfeld enhancement factor S with the tree level cross-section $(\sigma_{an}v)^{tree}$ to get $\sigma_{an}v$

$$\langle \sigma_{anv} \rangle = rac{x_X^{3/2}}{2\sqrt{\pi}} \int S(\sigma_{an}v)^{tree} v^2 e^{-x_X v^2/4} dv$$

Tulin et al., 2013

Oindrila Ghosh (IMSc)

May 26, 2015 27 / 37

Parameter space

For symmetric dark matter (both X and \overline{X} abundance) we use $\sigma_T = (\sigma_T^{att} + \sigma_T^{rep})/2$

For asymmetric dark matter (purely X or \overline{X}) scattering is repulsive

Tulin et al., 2012

Cluster collisions

Collision between galactic clusters

Harvey et al., 2015

72 collisions studied including major and minor mergers

- Confirms the existence of dark mass at 7.6σ significance
- Poses strong hints towards nongravitational self-interaction in DM

Oindrila Ghosh (IMSc)

SIDM: Dark Force and Beyond

May 26, 2015 29 / 37

Cluster collisions

Hubble Space Telescope Data Release, 2015

Oindrila Ghosh (IMSc)

SIDM: Dark Force and Beyond

Cluster collisions

Hubble Space Telescope: optical imaging Chandra Observatory data: x-ray imaging

30 systems picked within the redshift 0.2 < z < 0.6 + 2 systems at z > 0.8Contains 72 pieces of substructure

Harvey et al., 2015

Oindrila Ghosh (IMSc)

SIDM: Dark Force and Beyond

May 26, 2015 31 / 37

Making a case for self-interaction

Mean DM lag $\langle \delta_{SI} \rangle = -5.8 \pm 8.2 kpc$ in the direction of motion $\langle \delta_{DI} \rangle = -1.8 \pm 7.0 kpc$ perpendicularly **Constraints on interaction cross section**

Limits derived from Bullet cluster collision

- Test for drag $\longrightarrow \sigma_{DM}/m < 1.25 cm^2/g[68\% CL]$
- Test for mass loss $\longrightarrow \sigma_{DM}/m < 0.7 cm^2/g[68\% CL]$

Define dimensionless
$$eta \equiv rac{\delta_{SL}}{\delta_{SG}} = B\{1 - e^{[rac{-(\sigma_{DM} - \sigma_{gal})}{\sigma^*}]}\}$$

HST and Chandra observation on colliding clusters

Fractional lag of DM relative to gas $\langle \beta
angle = -0.04 \pm 0.07 [68\% CL]$

•
$$\sigma_{DM}/m = -0.25^{+0.42}_{-0.43} cm^2/g[68\% CL, two - tailed]$$

• $\sigma_{DM}/m < 0.47 cm^2/g[95\% CL, one - tailed]$

If charged both under hidden gauge group U'(1) and the Standard Model, dark matter can couple to SM through the mediator

$$\begin{split} &\text{Spin-independent/dependent effective coupling cross section} \\ &\sigma_{\chi n}^{SI} \approx 10^{-24} cm^2 x \epsilon_{eff}^2 (\frac{30 MeV}{m_\phi})^4 x \frac{\alpha_X}{10^{-2}} \text{ asymmetric DM} \\ &\sigma_{\chi n}^{SI} \approx 10^{-24} cm^2 x \epsilon_{eff}^2 (\frac{30 MeV}{m_\phi})^4 x \frac{m_X}{200 GeV} \text{ symmetric DM} \end{split}$$

Direct detection constraints via LUX and XENON1T

Attempt at looking into indirect detection prospects.

Line searches with Fermi-LAT, antimatter fraction from AMS-02 etc.

Collider searches in the light of LHC

Conclusion

Conclusion

- Astrophysical observations DOES NOT exclude Hidden Dark Matter
- Favours light DM in self-interacting framework
- Indicates long-range interaction
- Emphasizes light mediator (Yukawa scalars, *not-so-massive* vector bosons)

Possibilities

- Employing tighter astrophysical bounds to narrow down on self-interaction
- N-body simulations to investigate the accuracy of complementarity
- Prospective limits from detectors to confine the parameter space

References

Weinberg, Bullock, Governato, Kuzio de Naray, Peter (2013) Cold dark matter: controversies on small scales Proceedings of the National Academy of Sciences of the United States of America

Boylan-Kolchin, Bullock, Kaplinghat (2011) Too big to fail? The puzzling darkness of massive Milky Way subhaloes *Mon.Not.Roy.Astron.Soc.415:L40,2011*

Papastergis, Giovanelli, Haynes, Shankar (2015) Is there a too big to fail problem in the field? Astronomy & Astrophysics manuscript no. TBTF_field.arXiv3

Tulin, Yu, Zurek (2013)

Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure

Phys. Rev. D 87, 115007

References

Tulin, Yu, Zurek (2012)

Resonant Dark Forces and the Small Scale Structure Phys. Rev. Lett. 110, 111301

Cassel S. (2009)

Sommerfeld factor for arbitrary partial wave processes

J.Phys.G37:105009,2010

Bauer, Buckley, Cahill-Rowley et al. (2013)

Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond

Report prepared for the Community Summer Study (Snowmass) 2013, on behalf of Cosmic Frontier Working Groups 1-4

Harvey, Massey, Kitching, Taylor, Tittley (2015) The non-gravitational interactions of dark matter in colliding galaxy clusters Science, Vol. 347 no. 6229 pp. 1462-1465 (2015)

The End

∃ >

(日) (日) (日) (日)