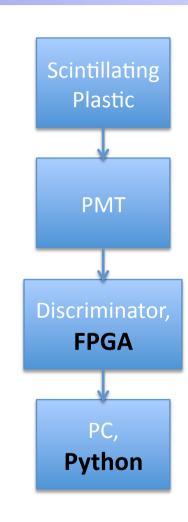

## Lab 6 & 7

- FPGA configuration using HDL
- Interface to FPGA using Ethernet and Python



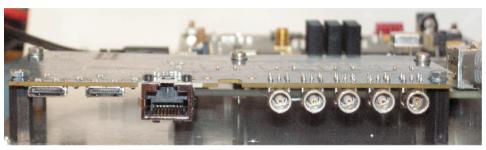
## Overview


- Intended to be a introduction to:
  - configuring programmable logic
     (FPGA) using a HDL (VHDL)
  - Readout using a scripting language ( Python ).
- Uses cosmic ray muons and scintillation detectors to provide signals.
  - ( Astro Particle Physics in miniature... )





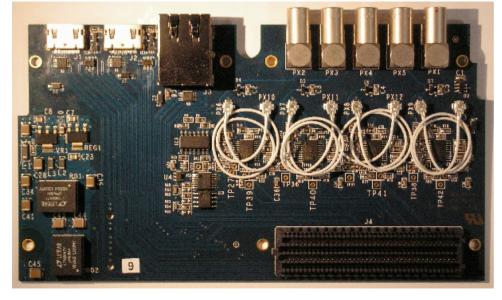
## Overview


- Intended to be a introduction to:
  - configuring programmable logic
     (FPGA) using a HDL (VHDL)
  - Readout using a scripting language
    ( Python ).
- Uses cosmic ray muons and scintillation detectors to provide signals.
  - ( Astro Particle Physics in miniature... )





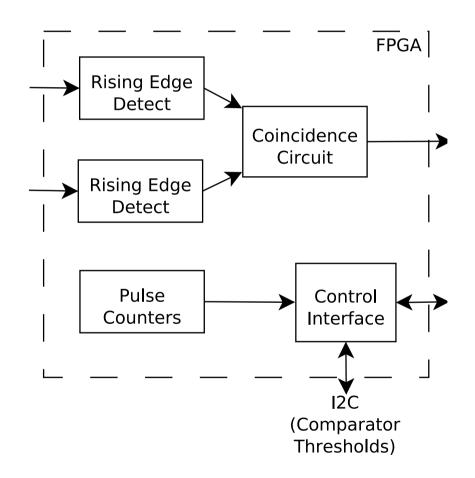
## Hardware


- "Trigger Logic Unit" designed for beam test work
  - Part of EU funded AIDA-2020 programme
- "FPGA Mezzanine Card" format ( VITA-57 )
- Mounted on FPGA development board
  - Xilinx SP605 (Spartan-6 xc6s45)



DUT0 DUT1 DUT2 (HDMI) (HDMI) (RJ45)

Trigger Inputs


Clock I/O





### **Firmware**

- "Fill in the boxes" tutorial
  - Complete an existing design
- Communication
   with host PC using
   Gigabit Ethernet
   (IPBus fimware
   developed for
   CMS)





## Exercise

- Fill in the box (synthesis)
- Test in hardware
- Test in simulation
- Read out/control counters via Gigabit Ethernet



## Exercise

- More material than can be covered in 2-3 hours, so divided in two:
  - Lab 6 hardware oriented
  - Lab 7 software oriented
- Can do one or both labs.



# Acknowledgements

#### Special thanks to:



Scintillation detectors and power supplies (Ralf Diener, Hendrik Jansen)



Trigger Logic Unit hardware

