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General Outline

* Motivation for Vertical Integration
* Enabling Technologies
 Bump Bonding in Pixel Sensors/Readout Chips
* Enabling Technologies for Direct Wafer Bonding

e Vertical Integration in New Pixel Sensors
(VIPIC project)

e Vertical Integration in New Memory Applications
(VIPRAM project)

Thanks to the experts: Alan Huffman (RTl), Nick Hinton (Purdue)



Early history: Silicon Strip Detectors

Silicon detector
used in the NA11
experiment at
CERN in the 1980’s.

The challenge is to instrument a large number of channels
while minimizing

— Mass (cables, interconnect, substrates)

— Power dissipation (requires active cooling)

— Needs to work at high rates (requires a trigger, or data buffering)
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Nucl. Instrum. Meth. A324 (1993) 34-52.
Nucl. Instrum. Meth. A430 (1998) 326-350.

Readout Channel Density

Early ASIC development:
CAMEX64 — 64 channel 3.5 um CMOS
MX7 — 128 channel 3 um CMOS

SVX — 128 channel MOSIS submission

Enabling technologies:

* Wire bonds
e Pitch adapters
* Low-mass hybrid circuits

bonding
berween detectors
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Tracking Performance
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OPAL silicon microvertex detector:
two layers of single-sided silicon strips with
a 50 um readout pitch.
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Single-sided strips can work
well when the occupancy is low:
* Test beams

e Quter tracker regions

A
o(dy) =15 um

High hit occupancy leads to
pattern recognition ambiguities
and large fake rates.

Partially mitigated by

 Additional layers

 Orthogonal or small-angle
stereo planes
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CCD Sensors
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SLD experiment: eTe™ — ZY at SLAC
 Tiny beam spot (2 um)

e VXD-3:3.2 X 10° pixels (20 um x 20 um)

e Unsparsified readout at 5 MHz

* Only possible due to low collision rate (120 Hz)
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Pixel Detectors
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* Better pattern recognition /7
* Lower occupancy Y 2

Fast signal integration («25 ns)

Zero suppression

Radiation hard (up to 101® neq/cm?)

Thin
Good signal/noise
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Event display of a double b-jet candidate
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ixel Sensor Technology

Example: CMS Forward Pixels
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PSI46v2 Pixel Readout

e 250 um CMOS process with 5 metal

layers.

* 52x80 array of 100 um x 150 pm
pixels. _— """777f7777777777-77777;:7i ifil.;;.;;.;;h;ﬁi
* Data from double-columns s |

. |

transferred to data buffers in B T e i
periphery logic. % Ji i i i
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Hybrid Pixel Detectors

FParticle Track

Pixel Diode
{Typical)

Detector Diode Array

Wire Bonds || Sensor || Bump Bonds || ROCs
\ \ /

---------------------------------------

e e e el

Pixel Readout
Unit Cell

(Typical) R R R
\ ] X
Pixel Readout Silicon Plate VHDI Adhesive

Integrated Circuit

Readout Buf fers
and Control Cireuitry Indium Bump

for Bonding
{Typical)

Wire bonds to external circuits still
required at the periphery.

Small pitch requirements are not

preferred by typical industrial \

applications...
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Hybrid Pixel Detectors

e Several enabling technologies are needed:
— Dielectric materials for passivation
— Under-Bump Metallization (UBM)
— Bump formation
— Dicing
— Thinning
— Flip-chip assembly
» Wafer-level processing wherever possible

 Still making use of previous enabling technologies:
— Low mass hybrids
— Wire bonding
— Low mass power distribution and cables



Typical Flip-Chip Assembly Flow

Sensor wafer containing 8 2x8 sensors Sensor wafer containing PSI146v2
for CMS Forward Pixel detector upgrade readout chips — 66 2x2 reticles.

A reliable process available for over a decade.
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Fine Pitched Bump Formation

Incoming Wafer
With 1/O Pads

Repassivation
With BCB

UBM Deposition

Apply and
Define Plating
Template

September 16, 2015

Plate Solder
or Wettable
Metal

Strip Resist
Template

Reflow

Etch Field
UBM

Lill

34+

BCB polymer applied to entire surface with openings for bump pads.
Ti-Cu under-bump metallization.

Solder bumps electroplated to readout chip only.

Ni-Au deposited on sensor for solder bond.
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Reflow and Dicing

reflow

60pum 400X 50pm 500X

dicing
ROC and
sensor

s
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Flip Chip Assembly and Reflow

Solder flux — also acts as tacking compound during
placement but must be cleaned.

Plasma-assisted dry soldering — activation of Sn-Pb
surface before reflow.

Placement of good die on sensors.

Nitrogen atmosphere reflow — self-alignment.
Placement accuracy demands at least 60% overlap.
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0 CL5: >4000 pix def 2 CL4: lalnit 0 CL3: addr step
0 CL4: dcol def 5 CL3: >4 pix def 0 CL3: black
12 CL4: »40 pix def 0 CL3: Tmean 8 CL2: 1.4 pix def
0 CL4: mask 0 CL3: Tstd 208 CL1: ok
Good ROC wafer map from i> ¢> :\’>

. .
testing with probe card.
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Phase 1 Upgrade FPix Modules

\Sensor \HDI Wire bonds
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Wire Bonding and Encapsulation

e Lots of technologies used:
— Wire bonding
— Encapsulation of wire bonds
— Rad-hard adhesives
— Thin circuits with small

feature sizes

* Vertical integration has
not replaced these older
technologies

— Choose appropriate
technology wisely!
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Large Devices

PSI146
78 mm?
250 nm CMOS (2005) ATLAS FE-14B
100 um x 150 um pixel size 380 mm?
52x80 pixel array (4160) 130 nm CMOS (2011)
Active area: 81% 50 pm x 250 um pixel size

80x336 pixel array (26880)
Active area: 89%
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Challenges of Large, Thin Die

* Thinning by backside mechanical grinding
e Stress relief

— Mechanical polishing
— Chemical mechanical polishing
— Wet or dry silicon etch

* Front/back CTE mismatch between warps wafer during reflow

JINST 9 C05039 2014
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Bonding with a Carrier Wafer

HD3007 adhesive
HD MicroSystems)

MASAMS HASMAS SSSMAM SM4MSM SASASA SSsAM sSsmAs

r------i d) |

 Example material: Schott Borofloat 33
* Un-bonded using UV laser light
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Low Volume Applications

e Current R&D effort: rad-hard pixel sensors
— 3D implants, p-in-n epitaxial, (diamonds)
— Continue to operate at 10'® neq/cm?
— Currently available readout chips die at 101

e Desirable to attach un-irradiated readout chips to
irradiated sensors

* Avoid high temperatures associated with solder
reflow to prevent annealing of damage to crystal
lattice
— Indium bumps forced together without reflow
— Low volume alternatives



Alternatives: Gold stud bonding

Example from UC Davis

Placed
individually at
72 5 rate of a few Hz

2) A pneumatic arm

1) Capillary with wire e : 4) The capillary is

threaded. This is the RGHCHINR Nl viuh Wt HTreballe lowered and bond 5) The capillary is ) Wire Lreake ot Wop
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Fully 3D Integration

* Motivation:
1. Reduction in system volume, mass, footprint
2. Higher bandwidth, reduced power consumption
3. Reduced manufacturing cost
4. New applications

e Generally all are of interest for HEP instrumentation

But the appropriate technology must be chosen wisely.

* Vertical Integration Technology:
— Overview of the enabling technologies
— Recent examples from High Energy Physics



Direct Wafer Bonding

Bump bonding is performed at the die level
Desirable to process entire wafers (if possible)

An alternative is direct bonding of
— Wafer to wafer
— Die to wafer
— Die to die (possibly)

Requires several new “enabling technologies”:
— Vertical interconnect (may include thru-silicon vias)
— Wafer alignment and bonding



DBI Process Flow (Damascene Method)

Contact metal
— Back end-of-line silicon surface

Sio,

Etch inter-layer dielectric

Deposit metal contact (eg. Cu)

Chemical/Mechanical Polishing

Repeat...

The result is a highly planar
SiO, / metal surface
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DBI Process Flow (Ziptronix)
I

Cleaning — removes a few monolayers
of SiO, / breaking surface bonds

Activation — terminates Si bonds
Si-NH,, or Si-HF

Alignment and placement

vl

Low temperature bonding
Si-NH, + Si-NH, = Si-N-N-Si + 2H,
Si-HF + Si-HF = Si-F-F-Si + H,
Placement accuracy < 1 um
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Thru-Silicon Vias

The DBI Process can join wafers front-to-front.
Stacking more than two wafers requires front-to-back connections.
Thru-silicon vias: DRIE, passivation, seed layer, metal deposition
Wafer thinning

____
—
—_—
i

“+ Photoresist

First etch (SF;)

Passivation (C,F;)

Start of second
etch

Second etch
continuous
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Thru-Silicon Via Formation

Prinzipieller Ablauf des TSV Prozesses

Hilfawafer
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Vertical Integration in HEP:

VIPIC Project

Vertically Integrated Photon Imaging Chip

* Targeting X-ray photon correlation spectroscopy:
— Current generation of cameras has 1 kHz frame rate

— Next generation would like
* Large detector area
e Dead-time-less readout
e Time resolution of 10 ns
* Frame rates approaching 100 kHz
e Collaborating Institutes:

— BNL, FNAL (US) and AGH-UST (Krakow Poland)

* Disclaimer:
— Grzegorz Deptuch and others are the real experts



VIPIC Project

« Demonstrates a 64x64 array of 80 um x 80 um pixels
* Analog and digital circuits fabricated in 130 nm CMOS on
different layers, interconnected using copper fusion bonding
 TSVs provide connections to sensor and pads for bump bonds.
— Thinned to 6 um, 1.2 um @, 3.8 um minimum spacing
 No dead areas at the edges — multiple devices can be butted
together PCB

Si interposer
or more tiers

DIGITAL
FUSION BONDIN
USION BONDING 20um

bump
bonding

ROIC

ANALOG
FUSION BONDING

GND

>300um

DETECTOR
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VIPIC1 Project

First tests interfaced the 80 um x 80 um pixel array
with a 100 um x 100 pm sensor.

Pads for bump bonding skip every 5t pixel.

Bump bonded to interposer, wire bonded to PCB.
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VIPIC1 Performance
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VIPIC Performance

Equivalent noise is
about 40 electrons.

Compare with noise on
bump-bonded PSI46v2
(160 e).

Read out in Fermilab
test beam — hits
correlated with

reconstructed tracks.

No wire bond pads = no
dead space at edges of
device.
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Scaling Up to Larger Arrays

X-ray Photon Correlation Spectroscopy (XPCS):

t+ 4At
t+3At
t+ 2At

: ., N
i,
Pinhaole “\'ﬁl
aperture.

: - CCch
| = h camera

Double crystal
monochromator

Vertical integration allows the

et construction of a large array of

i T sensors butted together with
Synchratron . .

storage g minimal dead space.

t ++ At t+ 2A¢%

T+ 3At T+ 4At

0. G. Shpyrko et al., Mature 447, 68 (2007)
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Memory Applications

* Yield considerations:
— One bad readout chip leaves a large hole in a larger sensor
— Only assemble with known good die
— Allow single-chip sensors to be closely spaced on all sides

e Different considerations for memory applications

— When designed to tolerate defects, bad regions of memory
reduce capacity but don’t yield the entire device

— Multiple identical tiers of logic
— Design with space required for TSVs



VIPRAM Motivation

e Pattern Recognition Associative Memory for fast pattern
recognition in fast track trigger applications

e Tracking information in the CMS Level 1 trigger requires
finding and fitting patterns of hits in the outer tracker.
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Fast Track Finding

* Track reconstruction
— N layers, n hits per layer
— Pattern recognition, worst case O(n")
— Track fit, O(N)
* Pattern Recognition Associative Memory

— Stores which patterns correspond to possible tracks

Layer6 |A[B]CD|E[AGIH[J]J[K]L[M[N]O[P]

mﬁ%—m |dentify all acceptable
patterns in parallel.

Layer4 |[A[B|c[DIE[F[GIH[I]UIK]L[M[N]O[P]

Layer3 [A[B]C[DIE[FIGIH] 1] J[K]LIM[N]O]P]

Layer2 [A[B|C|DIE[F|G[H]I[J[K][L[M[N]O[P] TraCklng at the LHC may
/ require 10° patterns!

Layer 1 |A|B C|D|7ﬂ élHlI J|K|L|M NlOlP




2D Implementation (AMchip03)

ONEFATTERN ' |aver1 Layer2 Layer3 Layer4

INFN design: 5120

=—

i
Ce'owfrdﬂ d*T d’? d’ﬂ? " patterns per chip
Cell 1 [

||
[ — . ..
el | I FF
Il i ! 4
||
|I
||
I

CBHQH | | | ,

cell 3! | | |
| )
A A A A

HIT HIT HIT HIT

Majority logic selects patterns with hits in a sufficient number of layers
Output is the pattern address

Routing contention in 2D: matching bits must be routed to edge of chip
Natural solution: route matching bits vertically in 3D
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3D Implementation: VIPRAM

NE Majority logic

— Each Vertical Column:
All the circuitry necessary
to detect one road.

<——__ Eachtier contains

patterns on one layer

First implementin 130 nm
technology with 204,800
patterns per device.

Ultimately, fabricate in 65 nm.
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Vertical Integration

 Economical because each layer is identical.

e Signals routed from individual tiers to top layer using
structures called “diagonal vias”:

\

Conventional routing
with TSVs to lower tiers
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Summary

Many “enabling technologies” are needed

Technology discussed here is no longer on the
“bleeding edge”

Modern particle physics experiments need
technology that can be relied on

— Deliver required components on schedule
— Budget constraints

New technologies enable new ideas
Older technologies remain indispensable



