Measurement of top quark pair differential cross sections at 8 TeV using CMS

María Aldaya (DESY)

LHC Discussions, DESY, 13 July 2015

Top: key to QCD, EW and new physics

- Only quark that decays before hadronizing
 - → No bound states, study the properties of a 'bare' quark

- Heaviest elementary particle known
 - top: largest Yukawa coupling to Higgs

- Several open questions:
 - Role in EW symmetry breaking?
 - Role in beyond SM (BSM) physics?
 - Are the couplings affected?
- Main background for Higgs and many searches for new physics
- Top quark measurements may provide insight into BSM physics

Precise understanding of top quark production is crucial

Top quark pair production ...

Top quark pair (tt) production mainly by gluon-gluon fusion at LHC (~80% at 7,8 TeV)

- LHC Run-I:
- 7 TeV: ~ 1 M ft pairs
- 8 TeV: ~ 5.5 M tt pairs

Full NNLO+NNLL calculation¹ [Czakon, Fiedler, Mitov, arXiv:1303.6254]

\sqrt{s}	$\sigma_{t\bar{t}}$ (NNLO+NNLL) ² [pb]	Scale	PDF+ α_s^3	Mass
[TeV]	(172.5 GeV)	uncert. [pb]	uncert. [pb]	uncert. [pb]
7	177.3	+4.6 -6.0	+9.0 -9.0	+5.4 -5.3
8	252.9	+6.4 -8.6	+11.7 -11.7	+7.6 -7.3
13	831.8	+19.8 -29.2	+35.1 -35.1	+23.2 -22.5

¹https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO

- ² calculated using Top⁺⁺(v2.0)
- ³ calculated following PDF4LHC prescription

 Theory predictions and models need to be tuned and tested with measurements

The large LHC samples allow measuring tt

• Precise tests of QCD for top quark

- Extract/use for PDF fits
- Enhance sensitivity to new physics
- Background for Higgs, rare processes and many BSM searches

performed by UHH & DESY

(arXiv:1505.04480, submitted to EPJC)

Important for LHC Run-II !

A.Mitov et al, TOP2015, http://indico.cern.ch/event/ 290408/session/1/contribution/27/material/slides/0.pdf

5

Why measure differentially?

General analysis strategy

Measure cross section $\sigma(t\bar{t})$ as a function of kinematic distributions of top, top pairs, b-jets, leptons, and lepton pairs

Event selection

Goal: clean tī sample (<20% background)

Lepton+jets:

- Exactly 1 high- p_T isolated lepton (μ or e)
 - p_T > 33 GeV, |η| < 2.1
- \geq 4 jets, p_T > 30 GeV, | η | < 2.4
- ≥ 2 b-tagged jets

Dileptons:

- 2 opp.-sign, high- p_T isolated leptons (ee, $\mu\mu$, μe)
 - $p_T > 20$ GeV, $|\eta| < 2.4$
- QCD veto: m_{II} > 20 GeV
- \geq 2 jets, p_T > 30 GeV, | η | < 2.4
- ≥ 1 b-tagged jets
- ee, $\mu\mu$: $E_T^{miss} > 40 \text{ GeV}$; Z veto: $|m_Z m_{\parallel}| > 15 \text{ GeV}$
- In addition: kinematic reconstruction of tt system

Kinematic distributions – dileptons

- Pure tt samples after event selection:
 - ~ 80% tī
- Main backgrounds: tt(other), single top, Z+jets
- Reference tt prediction:

MadGraph+Pythia6

Leptons and jets p_T spectra shows similar trend as top p_T , both for I+jets and dileptons

Normalized differential cross section

Binning

Chosen to limit migration effects, quantify with:

purity (p^i) & stability (s^i): $\ge 60\%$

$$p^{i} = rac{N^{i}_{rec\&gen}}{N^{i}_{rec}} \quad s^{i} = rac{N^{i}_{rec\&gen}}{N^{i}_{gen}}$$

Regularized unfolding

• Basic unfolding: simple inversion of response matrix A_{ii}:

$$\mathbf{N}_{i,\mathrm{unf}} = A_{ij}^{-1} \mathbf{N}_{j,\mathrm{meas}}$$

 Regularization used to remove large statistical fluctuations (SVD)

- Leptons and (b)jets: correct to particle level in fiducial phase space
 - leptons: $p_T > 33$ (20) GeV, $|\eta| < 2.1$ (2.4) for l+jets (dilep)
 - jets: p_T > 30 GeV, |η| < 2.4
- Top and tt observables: correct to parton level in full phase space
- → Compare with highest QCD calculations

Results: top quarks

Full phase space, parton level

- For all distributions, data generally better described by Powheg+Herwig6
- **p**_T(top): Softer spectrum in data, in particular at the tails (in agreement with ATLAS)
 - Good agreement with approx. NNLO calculation over full p_T range
- y(top): Slightly less central in data than in MC, in particular for MadGraph+Pythia6 and approx. NNLO

Results: tł system

• Full phase space, parton level

- For all distributions, data generally better described by Powheg+Herwig6
- m(tt): Tails in data lower than predictions (in agreement with ATLAS)
- p_T(tt): Well described by all predictions, except NLO+NNLL (in agreement with ATLAS)

Results are consistent:

- I+jets vs dileptons

- 7 TeV vs 8 TeV

CMS, 5.0/19.7 fb⁻¹ at $\sqrt{s} = 7/8$ TeV

CMS, 5.0/19.7 fb⁻¹ at $\sqrt{s} = 7/8$ TeV

Summary

- Top quark differential cross sections: next step in precision physics
 - Essential for constraining the SM
 - Ideal probe for looking for new physics beyond the SM
- Presented latest results from CMS from Run-I
 - Top quarks, tt, leptons, lepton pairs, b-jets
 - Normalization to inclusive cross section: precision 3 % 10 % (syst. dominated)
- General good agreement with SM predictions
 - Gaining sensitivity to model differences
 - Measurements are typically lower than predicted with increasing p_T(top) and m(tt)
 - Comparison between ATLAS & CMS (7 TeV): consistent definition of top quark, default generators are compatible → work within TOPLHCWG
- More results in the pipeline at 8 TeV
 - Can be used for more quantitative studies to investigate the compatibility between ATLAS & CMS data

Looking forward to LHC Run-II !

Additional information

Systematic uncertainties

- Determined individually for each bin of the measurement
- General strategy: propagate uncertainties through full analysis
 - Experimental uncertainties: efficiencies, resolutions, ...
 - Modelling uncertainties: scale choices, hadronization, PDFs, ...
- Normalization: only shape uncertainties contribute

Typical values per bin

	Relative systematic uncertainty (%)				
	Source	Lepton and b jet observables		Top quark and tt observables	
		ℓ+jets	dileptons	ℓ+jets	dileptons
	Trigger eff. & lepton selec.	0.1	0.1	0.1	0.1
	Jet energy scale	2.3	0.4	1.6	0.8
	Jet energy resolution	0.4	0.2	0.5	0.3
Exporimontal	Background (Z+jets)	_	0.2	_	0.1
Experimental	Background (all other)	0.9	0.4	0.7	0.4
	b tagging	0.7	0.1	0.6	0.2
	Kinematic reconstruction	_	<0.1	_	<0.1
	Pileup	0.2	0.1	0.3	0.1
	Fact./renorm. scale	1.1	0.7	1.8	1.2
	ME-PS threshold	0.8	0.5	1.3	0.8
Modeling	Hadronization	2.7	1.4	1.9	1.1
J	Top quark mass	1.5	0.6	1.0	0.7
	PDF choice	0.1	0.2	0.1	0.5
		4.0			

Phase space definitions and observables

- Acceptance corrections:
 - Extrapolation from limited detector acceptance to full phase space with theory or MC simulation
 - Measurement of differential cross sections in fiducial phase space → reduced dependence of measurement on signal/background modelling

- top and tt observables: presented at parton level, full phase space
 - Allows for comparison with highest order QCD calculations, so far only available in production
 - Consistent top quark definition in ATLAS & CMS: before decay and after QCD radiation
- Ieptons, (b)-jets: presented at particle level, fiducial phase space
- Object definition at generator level: based on stable particles after radiation and hadronization

Leptons: from W decay	Jets : anti-kT algorithm (as for reco jets), cluster all but prompt particles (i.e, v , μ from hadron decays are inside jets)	
	b-jets : contains any of the decay products of a B-hadron	

Phase space definition closely follows the (detector-level) event selection

MC tt samples: parameters & tunes

Default samples

Matrix element	Shower & Hadronization	PDF	Tune	
MC@NLO v4	Herwig 6.5 + Jimmy 4.31	cteq66 or CT10	AUET1/2	
Powheg	Pythia 6	cteq66 (7 TeV) or CT10 (8 TeV)	Perugia 2011 C	
Alpgen	Herwig 6.5 + Jimmy 4.31	cteq6ll	AUET2	

• Powheg+Herwig: NLO PDF CT10, AUET2 Herwig 6.5 tune

CMS

ATI AC

Matrix element	Shower & Hadronization	PDF	Tune
MadGraph v5	Pythia 6	cteq6l	Z2 (7 TeV) Z2* (8 TeV)
Powheg	Pythia 6	cteq6m (7 TeV) CT10 (8 TeV)	Z2 (7 TeV) Z2* (8 TeV)
MC@NLO v3.4	Herwig 6 + Jimmy	cteq6m	default tune

• Powheg+Herwig: NLO PDF CT10 (8 TeV), AUET2 Herwig6 tune

CTEQ6M (7 TeV)

- ATLAS and CMS have consistent definition of the top quark
- Compatible behaviour in corresponding sample pairs: same differences between generator and parton shower schemes

Monte Carlo simulations

- Generators:
- ◊ ME at tree level (Alpgen, MadGraph)
- ◊ NLO (POWHEG, MC@NLO)
- Showering:
- Pythia (transverse-momentum-ordered evolution scale)
- ♦ HERWIG (angular-ordered)
- Powheg+Herwig provides reasonable description of the data for both experiments (different treatment of the hardest ISR than Pythia)

Ongoing work within the TOPLHCWG

- Parton level, extrapolated to full PS
- Consistent top quark definition in ATLAS & CMS: *before decay and after QCD radiation*
- Compatible generators between ATLAS & CMS
 (See TOPLHCWG meeting Nov13: <u>https://indico.cern.ch/event/280522/session/2/contribution/7/material/slides/0.pdf</u>)
- In general: predictions are larger than data for ATLAS & CMS, in particular at high m(tt) values
- CMS: Similar behaviour for dileptons, both at 7 and 8 TeV

Unfolding

Regularized SVD unfolding (Höcker, Kartvelishvili 1996; Blobel 1984, 2002)

Smearing of true distribution **f** by detector effects \rightarrow reconstructed distribution **g**

 $g_i(\mathbf{f}) = \sum_j A_{ij} f_j$ (response matrix A from MC simulation)

• Obtain estimator for f by **inverting A** via minimization of regularized χ^2 function

$$R(\mathbf{f},\tau) = \sum_{i} g_{i}(\mathbf{f}) - x_{i} \ln g_{i}(\mathbf{f}) + \tau C(\mathbf{f})$$

Regularization parameter T optimized for each distribution: minimize averaged global correlation among bins

Kinematic reconstruction – *l*+jets

- Vary 4-momenta of leptons, jets & neutrino within resolutions
- Constraints:
 - m_{top} = m_{antitop}
 - m_{qq} = m_{Iv} = m_W = 80.4 GeV
- Limit permutations: consider 4/5 leading jets, use b-tag information
- \bullet Take 4-jet permutation with minimum χ^2
- "Trick":
 - first fit with m_{top} = 172.5 GeV \rightarrow select best permutation
 - $\rm m_{top}$ free + fixed jet permutation \rightarrow obtain kinematics for differential measurements
- Cut on χ^2 probability > 2% \rightarrow increase correct jet permutations and signal purity

Kinematic reconstruction – dileptons

- Measured input: 2 jets, 2 leptons, MET
- Unknowns: $\overline{p}_{v}, \overline{p}_{\overline{v}} \rightarrow 6$
- Constraints:
 - > $m_{t}, m_{\tilde{t}} \rightarrow 2$

>
$$(\overline{p}_v + \overline{p}_{\overline{v}})_T = MET \rightarrow 2$$

- Reconstruct neutrino momenta from p_T conservation and known W boson and top quark masses → up to four-fold ambiguity, take solution with lowest tt mass
- Reconstruct event 100 times with varied b-jet and lepton four-momenta
 - → recover events without neutrino solution
 - \rightarrow top kinematics from average, weighted with true M_{lb} distribution
- Take jet-parton assignment with largest sum of weights