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• DEDUCTOR is NOT a project for ”just-to-describe-the-data” 

• At the moment we don’t hadronization 

• Only a few hard process is implemented (Drell-Yan, jet production, e+e-) 

• The focus is to do theoretical studies and use parton shower as theory prediction 

• Providing a pQCD all order theory definition 

• Genuine higher order effects in the shower evolution 

• Higher order effect in the hard part (this is usually called matching) 

• Taking care of quantum effect 

• Color interferences 

• Spin correlations 

• Understand the large logarithms and their summation in parton shower 

• Visible logarithms (like Drell-Yan transverse momentum) 

• Invisible logarithms (like threshold effects) 

• Exotic logarithms (“factorization breaking” effects, super-leading logs,…) 

• Understanding the relation to BFKL physics 
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• Let us consider an infrared safe observable and it has a typical resolution scale     .  This means 
every radiation under this scale is unresolvable and not visible by the observable.  

• The all order cross section can be written in a factorized form. The soft and hard part is separated 
by the factorization (or shower) scale    .  

• It is important that we factorize out the parton emissions (real and virtual) instead of some kind of 
jet, soft and hard function. 

• We work with states and operators in the statistical space. 

• We don’t have an all order proof for this factorization, yet. (But we are working on it…) 

• We know the QCD amplitudes factorize in the singular limits and that what we use here.
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The usual parton shower algorithms are theory motivated designs, phenomenological model of 
pQCD. It make some sense at LO level. As far as I know there is no formal definition even at leading 
order level.

To proof this we need a kind of 
generalized factorization.  

Finite corrections

Parton shower
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• Parton shower is defined based on a generalized factorization. 

• This has to be proven at all order level. Need a “constructive” proof. 

• The general scheme has been checked and works at LO level. This scheme is implemented 
(partly) in DEDUCTOR. 

• The so called NLO, NNLO,.. matching is part of shower definition. 

• DEDUCTOR is matched to NLO computation in the HELAC framework.  
Unfortunately this implementation follows the POWHEG scheme. 

• No enforced unitary. Loop graphs are explicitly considered. 

• Even in the LO order shower the events are weighted and not necessary positive, in fact they 
are complex number. 

• Negative weights come from the color structure and complex weight from the explicit loop 
graphs.  

• Able to predict not just the shape but the absolute normalization. 
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The fundamental object is quantum density matrix, with basis vectors 

⇢ =
X

m

X

{c,c0}m

��{c0}m
↵
⇢({c, c0}m)

⌦
{c}m

�� • Usually the dipole showers use leading 
color approximation (LC), considering only 
the diagonal color configurations before and 
after the splitting. (Approximation at matrix 
element square level.) 

• Full color evolution is impossible in parton 
shower. Just impossible to exponentiate, 
say a 30! x 30! matrix… 

• The LC approximation is not a systematical 
approximation, we cannot improve it 
perturbatively by adding back subleading 
correction in a controlled way. 

• Solution is LC+ approximation. It can handle 
color interferences and the approximation is 
only in the splitting kernel. Perturbative 
improvable. (Approximation at amplitude 
level.)
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At LHC (8TeV) the average number of the splitting in an event is about 25-30 and most of them 
subleading color contribution

Does it have any visible effect on the 
observable compared to the LC result?
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Inclusive jet cross section

Number of parton in a jet

Gap survival probability 
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Inclusive jet cross section

Number of parton in a jet

Gap survival probability 

Lots of work for nothing???
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• As we expected the (very) inclusive observables are insensitive to color.  

• The LC+ approximation is systematic but it considers only the coherent part of the soft gluon 
radiation. Most of the wide angle radiation are dropped. 

• LC+ is improvable pertubatively 

• Coulomb gluon effect can be considered in the LC+ approximation. This can lead to supper 
leading logs. This effects come from genuine loop contribution. (This is another reason to give up 
the concept of unweighted events…) 
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Visible Logs
”Visible logs”, like the Drell-Yan transverse momentum log(k2T /M

2
)

Z boson gets recoil 
from soft gluon 
emission
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Analytic result from DEDUCTOR
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”Invisible logs”, live under the integral. They are the so called threshold logs.

ŝs Q2

Only soft gluon 
can be emitted!

s ⇡ Q2
=) Q2

ŝ
⇡ 1 =) L = log

✓
1� Q2

ŝ

◆

• Simplest observable would be the total 
cross section. 

• Standard parton showers cannot say 
anything about these logs. They are 
normalized to the Born level total cross 
section. 

• The unitarity condition in shower is not 
God given, it is a technical choice to 
make the implementation simpler. 

• To be able to sum up threshold logs we 
have to rid off the unitarity condition and 
consider genuine loop contributions in 
the splitting kernel.
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Collinear counter-terms
with explicit poles

Partonic splitting operator 
with explicit and implicit 
singularities

Renormalized PDF
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⇥
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2)
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D(µ2)
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⇤�1

Defines the 
factorization scheme

Let us start with the singular operator. This operator also defines the subtraction terms.
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Let us start with the singular operator. This operator also defines the subtraction terms.

Real subtraction term 
(implicit singularities)

Virtual subtraction term 
(explicit 1/∊ singularities)

Collinear counter-term 
(explicit 1/∊ singularities)
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Source of Threshold Logs

19

Let us start with the singular operator. This operator also defines the subtraction terms.

Real subtraction term 
(implicit singularities)

Virtual subtraction term 
(explicit 1/∊ singularities)

Collinear counter-term 
(explicit 1/∊ singularities)

It is still useful to introduce the inclusive splitting operator and its approximation as

Defines the shower scheme 
(only power suppressed terms)

Finite in d=4 dimension

Unitary part, this leads to the standard shower

Completely neglected in 
the standard showers. The 
threshold contributions are 
here.



Shower Evolution

20

Unitary part

Threshold contribution

Now the shower evolution operator is  

✓ This leads to a non-unitary shower. 

✓ The threshold splitting operator doesn’t change the number of 
the partons and their momenta. It operates in the colour and 
flavour space only. 

✓ In LC+ approximation it leads to an extra factor that we have to 
insert after every step of the shower evolution.
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Colour interference part of the threshold logs
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Some of the threshold logarithms has to be summed up by the PDF functions by choosing 
factorization scheme appropriately. The first order kernel of the factorization scheme is 

- For                we don't have to change the factorization scheme. MSbar PDF works perfectly. 

- For                the PDFs get frozen. 

✓ Transverse momentum ordered shower

✓ For other orderings (virtuality and angular)
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✓ We have defined parton shower. 
➠ We defined parton shower based on pQCD and factorization of QCD density matrices. The aim is 

the gain as much control as possible on the approximations (like unitarity condition)… 
➠ We still need the all order proof of the factorization of the physical states. We want a constructive 

proof. Splitting operators (with many loops), momentum mapping, shower scale definition, …  
➠ At higher order it is not possible to turn every subtraction scheme to parton shower. 

✓ It works at NLO level.   
➠ We recovered what is called “Standard Shower”. 
➠ We obtained threshold resummation basically for free. Shower is not unitary! 
➠ If you want unitary shower, you need process dependent PDFs.    
➠ Some threshold logs get resummed in the PDFs. MSbar PDFs only for transverse momentum 

ordered showers. In other shower schemes the PDF factorisation scheme has to be adjusted. 
➠ There is a plan to implement the new factorization schemes in HERAFITTER. 

✗ I didn’t discuss in the talk. 
➠ We obtained NLO matching for free, it is just part of the scheme. 
➠ Genuine loop effects like          terms. 
➠ Final state heavy flavor threshold logs

⇡/✏
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• DEDUCTOR is designed to do a better job with color, spin and resummation of large logarithms compared 
to other shower generators. 

• Lambda ordering with and without initial state massive quarks 

• LC+ color treatment. It allows us to do color evolution at amplitude level  

• Spin correlations are not yet computed 

• Next version is available soon… 

• The shower equation is implemented at very abstract level. It allows us to use other ordering 
variables like kT or angle (massless or massive initial state partons). 

• Initial state threshold log resummation. 

• Subleading (wide angle subleading colour, Coulomb gluon,… ) contribution perturbative.  

• It is available at

http://www.desy.de/~znagy/deductor 
http://pages.uoregon.edu/soper/deductor

http://www.desy.de/~znagy/deductor
http://pages.uoregon.edu/soper/
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