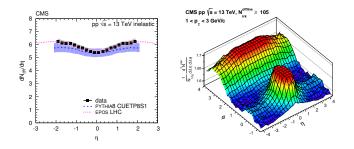
First Study of Particle Production and Correlation at 13 TeV with CMS

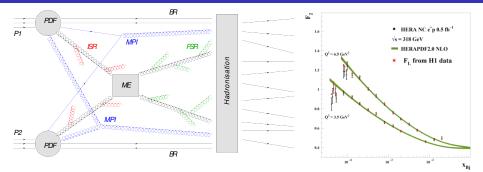
Benoît Roland (DESY)

LHC Physics Discussion

14 September 2015 DESY, Hamburg

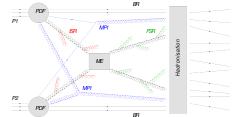

Benoît Roland (DESY)

First Study of ParticleProduction and Correlationat 13


Outline

• We want to probe

- The different components of hadrons production
- The transition from the perturbative to the non-perturbative region
- The behaviour of QCD at small-x
- With inclusive observables as a first step
 - Pseudorapidity distribution of charged hadrons
 - Two-particle correlations & Long-range near-side structure


Description of the hadron production

• Parton densities at small x and small scale

- Hard Scattering
 - \rightarrow described by pQCD at fixed order
- Initial-State Radiation and Final-State Radiation
 - \rightarrow account for higher order emissions
 - \rightarrow described by QCD-evolution-inspired Parton Shower
- Beam Remnants
- Multiple Parton Interactions (with its own ISR and FSR)
- Hadronisation

More on Multiple Parton Interactions

4 🗇 🕨 4

• Multiple Parton Interactions MPI

- \rightarrow Soft to semi-hard interactions
- \rightarrow Phenomenological models
- \rightarrow Tuning of the model parameters based on experimental data

- New default CMS tunes developed by the DESY QCD group
 - ightarrow Simultaneous fits to CDF UE data at 0.3, 0.9 and 1.96 TeV, and CMS UE data at 7 TeV
 - → Energy dependence of the MPI parameters
 - \rightarrow Different parton densities
 - \rightarrow Theoretical uncertainties from allowed parameter space

• MPI needed to explain the increase of hadron production in the DGLAP framework

- ightarrow collinear factorization and collinear parton densities
- \rightarrow no explicit k_T dependence
- \rightarrow would a framework based on k_T -factorization require (the same amout of) MPI?

Pseudorapidity distribution of charged hadrons at 13 TeV

CMS operated at 0 T \rightarrow no transverse momentum measurement

Two different reconstruction techniques: tracklets and tracks

Zero Bias trigger \rightarrow distributions for inelastic events

Final results corrected to primary charged long-lived hadrons (strange baryons included \rightarrow different from ATLAS definition)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tracklet reconstruction

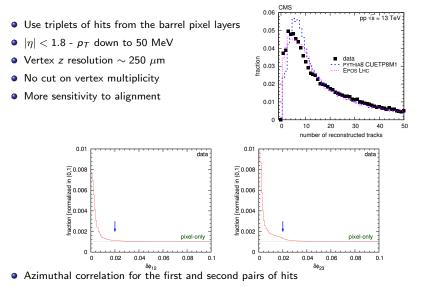

- Use pairs of hits from the barrel pixel layers
- $|\eta| < 2 p_T$ down to 40 MeV
- Vertex z resolution $\sim 0.02 0.1$ cm
- Only events with one primary vertex ۰
- Few sensitivity to alignment •

10⁰

fraction of tracklets

-10⁻³

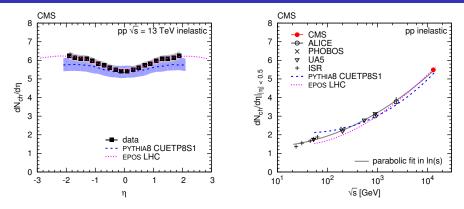
10-4



Layer 2

۲ Tracklets originating from primary vertex have sharp peak at $\Delta \varphi = 0$ (no magnetic field)

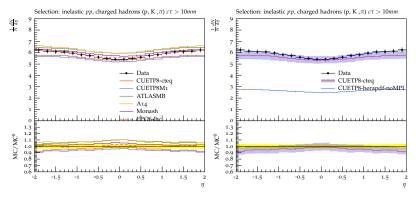
Background suppressed with $\Delta \eta < 0.1$ and $\Delta \varphi < 1$ and subtracted using side band region ۲


Track reconstruction - line tracking

• Background suppressed with $\delta \varphi_{12} < 0.02$ and $\delta \varphi_{23} < 0.02$

Benoît Roland (DESY)

Charged hadron density - results



ullet Both reconstruction methods have a total systematic uncertainty \sim 3 - 4 %

- Results of both analyses averaged and symmetrized in the range $|\eta| < 1.8$
- PYTHIA8 (CUETP8M1 and CUETP8S1) and EPOS LHC agree with the central value
- $\bullet\,$ Density better described by EPOS LHC over the full η range
- \sqrt{s} dependence fitted by a second order polynomial in $\ln(s)$

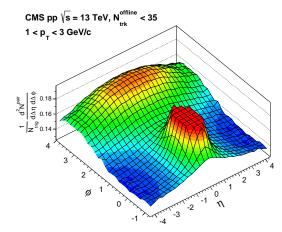
< 🗇 🕨

Charged hadron density - more theoretical comparisons

- All theoretical predictions are in reasonable agreement with the data
- Need measurements for different event classes to be able to really constrain the models
- ${ullet}$ Theoretical predictions without MPI underestimate the density by a factor ~ 2
- Crucial need for MPI in the collinear factorization framework

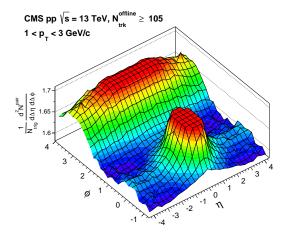
< 🗇 🕨

Two-particle correlations and Long-range near-side structure at 13 TeV


CMS operated at 3.8 T \rightarrow transverse momentum measurement

Dedicated high multiplicity triggers - Only events with one primary vertex

 $\eta - \varphi$ correlation for primary tracks with $|\eta| < 2.4$ and $p_T > 400$ MeV

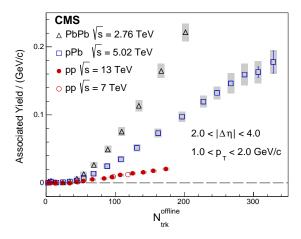

Correlation behaviour with p_T , track multiplicity, \sqrt{s}

Correlation in low multiplicy events

- Jet-like structure Correlation from four-momentum conservation
- Pairs of particles from the same jet: peak at $(\Delta\eta,\Deltaarphi)\sim(0,0)$
- Pairs of particles from back-to-back jets: long-range away-side correlation at $\Delta arphi \sim \pi$

Correlation in high multiplicy events

- Jet-like structure Emergence of a ridge-like structure
- long-range same-side correlation at $\Delta arphi \sim$ 0 over a range of at least 4 units in $|\Delta \eta|$
- Qualitatively explained by gluon saturation and hydrodynamic models


Focus on the near-side

• Correlation on the near-side: associated yield averaged over $2 < |\Delta \eta| < 4$

- In the high multiplicity region: yield is maximum in the range $1 < p_T < 2$ GeV
- In the range $1 < p_T < 2$ GeV: linear increase of the yield with the track multiplicity
- Comparison between 7 TeV and 13 TeV results: no observation of \sqrt{s} dependence

Size of the interacting systems

- Strong dependence on the size of the interacting systems
- ullet At same track multiplicity: associated yield in p Pb \sim 4 times higher, \sim 20 times in Pb Pb

Conclusion

Charged hadron pseudorapidity density for inelastic events

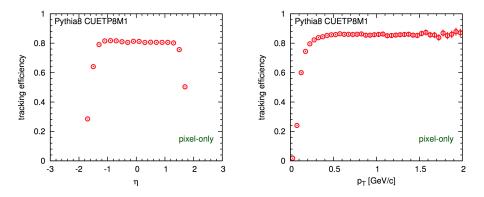
- Important contributions from soft to semi-hard multiple parton interactions
- MPI are crucial in the collinear factorization framework
- Would a framework based on k_T-factorization require (the same amout of) MPI?
- All theoretical predictions are in reasonable agreement with the data
- Need measurements for different event classes to be able to really constrain the models

Charged hadron angular correlation

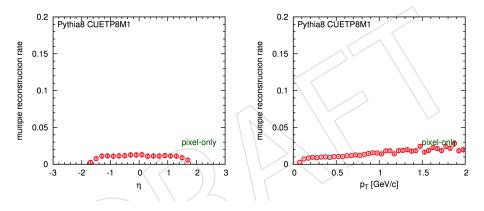
- Emergence of a long-range same-side correlation in high multiplicity events
- Correlation maximum in the range $1 < p_T < 2$ GeV Linear increase with multiplicity
- No observation of \sqrt{s} dependence Strong dependence on the system size
- Qualitatively explained by gluon saturation and hydrodynamic models

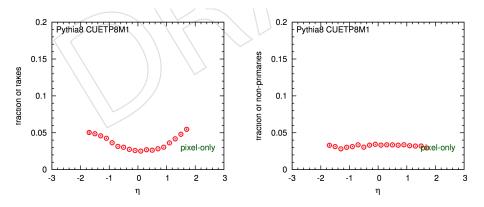
イロト イポト イヨト イヨ

Thanks for your attention!


A B A B A B A

Back up


æ


・ロン ・回 と ・ ヨン・

Efficiency line tracking

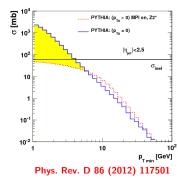
Multiple reconstruction line tracking

Phenomenology of the low- p_T region

• Total 2 \rightarrow 2 partonic cross section: $\sigma(p_T) \propto \frac{1}{p_T^2}$

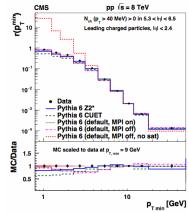
is divergent towards low p_T and eventually becomes larger than σ_{inel}

- At LHC energies: $\sigma(p_T) > \sigma_{inel}$ already for $p_T \sim 5$ GeV
 - \rightarrow Cross section needs to be tamed in the low p_T region
- In PYTHIA: the rise of the 2 \rightarrow 2 partonic cross section is controled by:
 - a regularization factor p_{T0} tuned to data:


$$\sigma(p_T) \propto rac{1}{p_T^2 + p_{T0}^2}$$

• multiple partonic interactions (MPI):

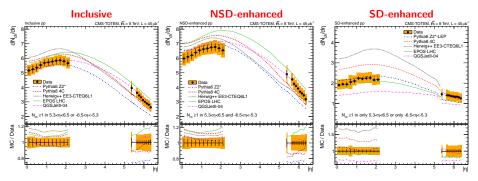
$$< n_{MPI} >= \sigma(p_T)/\sigma_{inel}$$


Energy dependence of the regularization factor:

$$p_{T0}(\sqrt{s}) = p_{T0}(\sqrt{s_0}) \left(\frac{\sqrt{s}}{\sqrt{s_0}}\right)^c$$

Integrated leading jet cross section at low p_T

arXiv 1507.00233 - submitted to PRD



• Saturation at low p_T observed experimentally

- Event cross section \rightarrow no sensitivity to jet multiplicities \rightarrow no sensitivity to MPI
- Normalized cross section \rightarrow converges to one at low p_T by construction
- Global behavior reproduced by the MC detailed description may be improved

Pseudorapidity distributions of charged particles at 8 TeV

Eur. Phys. J. C 74 (2014) 10, 3053

Bulk of particles produced in pp collisions from semi-hard (multi)parton interactions
 → Phenomenological models → Tuning based on experimental data

- NSD: sensitive to MPI SD: sensitive to diffraction modeling
- No consistent description of the distributions over the full η range
- Up to 20 % (30 %) discrepancy in the central (forward) region \rightarrow valuable input for tuning