

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# Flux expulsion efficiency for different cavity materials and treatments

Sam Posen TTC Meeting, SLAC 2 December 2015

# **Maintaining High Q<sub>0</sub> in Presence of External B Fields**

- High Q<sub>0</sub> can reduce cryogenic costs in high duty factor SRF linacs by tens of millions of dollars
- High Q<sub>0</sub> in vertical test must be preserved to cryomodule
- Significant source of Q<sub>0</sub> degradation: flux losses



11/30/2015

# **Maintaining High Q<sub>0</sub> in Presence of External B Fields**

- High Q<sub>0</sub> can reduce cryogenic costs in high duty factor SRF linacs by tens of millions of dollars
- High Q<sub>0</sub> in vertical test must be preserved to cryomodule
- Significant source of Q<sub>0</sub> degradation: flux losses



11/30/2015

# **Minimize Trapping 1: Cool through T<sub>c</sub> with dT/dy (bulk Nb)**



A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014).



# Minimize Trapping 1: Cool through T<sub>c</sub> with dT/dy (bulk Nb)



A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014).



# Minimize Trapping 2: Minimize Pinning in SRF-Treated Nb

- Surface features:
  - Oxides
  - Nitrides
  - N- or O-rich niobium
  - Mechanical damage
  - Contamination
- Bulk features:
  - Grain boundaries
  - Dislocations
  - Impurities
- How important are these to pinning?



### **Previous Studies**

- Previous studies, e.g.
  - Aull, Kugeler and Knobloch, PRSTAB 15, 062001 (2012)
  - A. Dhavale et al, Supercond. Sci. Tech., 25, 065014 (2012)
  - G. Ciovati, and A. Gurevich, Proc. SRF 2007, TUP13 (2007)
- Qualitative trends, but no measurement as a function of thermal gradient, which is crucial





## **Experimental Considerations**



- Goal: measure flux trapping as a function of thermal gradient and material treatment
- Connection to R<sub>res</sub> Performing study on cavities directly determines required conditions to avoid severely degraded RF performance



# **Measuring Flux Expulsion During Transition**



An axial magnetic field on the order of 10 mG is applied during cooldown. Fluxgate magnetometers at the equator measured the magnetic field before  $B_{NC}$ and after  $B_{SC}$  superconducting transition.

Temperature sensors

External field coils

Fluxgate magnetometers

Complete trapping:  $B_{sc}/B_{NC} = 1$ Complete expulsion:  $B_{sc}/B_{NC} \approx 1.8$ 



**Fermilab** 

Measurement technique from A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014).

11/30/2015

# **Measuring Flux Expulsion During Transition**





### **Example of Cavity that Expels Flux Well**



Sam Posen | TTC Meeting, SLAC, 2015 11

# Example of Cavity that Expels Flux Poorly (Large Trapping)



# Large Survey

- Measured many single cell 1.3 GHz cavities
- Thermal cycles start from 15-100 K, cool down to 7 K, warm up
- Parasitic measurements on other experiments
- 22 datasets measured (i.e. treatment then into dewar)

# **Quickly Apparent Trend With Batches of AES Cavities**



11/30/2015



#### AES Single Cells Batch 1

AES Single Cells Batch 2



15 Sam Posen | TTC Meeting, SLAC, 2015

# Quickly Apparent Trend With Batch of AES Cavities



#### AES Single Cells Batch 1

AES Single Cells Batch 2



16 Sam Posen | TTC Meeting, SLAC, 2015

### **Previous Studies**

- Previous sample studies, e.g.
  - Aull, Kugeler and Knobloch, PRSTAB 15, 062001 (2012)
  - A. Dhavale et al, Supercond. Sci. Tech., 25, 065014 (2012)
- No measurement as a function of thermal gradient, but qualitative trend: larger grain material seems to expel better





#### **Other Fine Grain Cavities – Poor Expulsion**



# Large Grain Cavity – Strong Expulsion



#### **Conversion to From Poor to Strong Expulsion**



### Long Treatment at 800 C



21 Sam Posen | TTC Meeting, SLAC, 2015

### Long Treatment at 800 C



# Surface Alteration With No Significant Effect on Expulsion



Sam Posen | TTC Meeting, SLAC, 2015

11/30/2015

#### AES017 cooled in 10 mG





# Summary

- Treating for strong expulsion can reduce requirements for:
  - Shielding/active compensation of external fields B<sub>ext</sub>
  - Sensitivity to trapped flux  $R_s(B_{trap})$
  - Cryogenic plant size and power consumption
- Experiment: Measure trapped flux as a function of treatment and spatial temperature gradient
- Thermal gradient at transition critical for all preparations
- Modification of bulk structure through furnace treatment shows trend of improved flux expulsion
- Modification of surface structure shows minimal influence on flux expulsion
- Additional studies are required to determine reproducible conditions for strong expulsion of flux (try at 800 C)

🛟 Fermilab

# Implications for Achieving High Q<sub>0</sub> in Cryomodules

- If reduced grain boundary density improves expulsion, path to optimize preparation – furnace treatment, larger ASTM spec for half-cell sheets, ingot LG Nb for sheets
- Consistent with high Q<sub>0</sub> in LG studies, e.g. W. Singer et al., Phys. Rev. ST-AB, 16, 012003 (2013)
- N-doping discovery made on cavity with strong expulsion



# Outlook

- Cavity studies Progressive measurements with 6 hr 800 C furnace treatments
- Sample studies with progressive steps of 6 hr at 800 C, measure:
  - Grain size and dislocation content (SEM-EBSD)
  - Mechanical properties (tensile test)
  - Flux expulsion (small dewar)



