

Cryomodule Performance including Degradation: Comparison of Cavity Performance in XFEL Cryomodules

Nick Walker DESY TTC 2015 - SLAC - 01/12/15

2

XFEL Today 64 modules (512 cavities)*

* in XFEL DB

NB: 31 MV/m administrative limit for module tests (no administrative limit for VT)

European O. Napoly On the Comparing of VT and Module Gradients

About Gradient Comparison

- Accelerating gradients are the most scrutinized module performance parameters, although heat loads, alignment and PED certification are entering the acceptance criteria.
- The absolute gradient is the result of the whole production chain, from the Nb sheet to the RF module test (MT). It is mostly determined by **cavity manufacturing** and **module assembly**.
- The quality of module assembly shows in the gradient difference between cavity acceptance (VT) and module acceptance (MT).
- The VT vs. MT comparison of both the 'maximum' and the 'operational' gradients is impaired by a **systematic error**:
 - Maximum gradients depend on 1) RF duty cycle, 2) cooling conditions and, 3) magnetic environment, which are completely different from VT to MT → mostly cavity-independent error
 - Oprational gradients depends, in addition, on X-Ray measurement devices which are completely different from VT to MT (although crosscalibrated) → mostly cavity-independent error
 - Finally, Q₀ is not measured in MT: therefore the MT usable gradient could correspond to lower or higher Q₀ values → cavity-dependent error

2 November 2015

LCWS 2015, Whistler

Irfu

European O. Napoly On the Comparing of VT and Module Gradients

About Gradient Comparison

- Accelerating gradients are the most scrutinized module performance parameters, although heat loads, alignment and PED certification are entering the acceptance criteria.
- The absolute gradient is the result of the whole production chain, from the Nb sheet to the RF module test (MT). It is mostly determined by **cavity manufacturing** and **module assembly**.
- The quality of module assembly shows in the gradient difference between cavity acceptance (VT) and module acceptance (MT).
- The VT vs. MT comparison of both the 'maximum' and the 'operational' gradients is impaired by a systematic error:
- Maximum gradients depend on 1) RF duty cycle, 2) cooling conditions and, 3) magnetic environment, which are completely different from VT to MT → mostly cavity-independent error
- Oprational gradients depends, in addition, on X-Ray measurement devices which are completely different from VT to MT (although crosscalibrated) → mostly cavity-independent error
- Finally, Q₀ is not measured in MT: therefore the MT usable gradient could correspond to lower or higher Q₀ values → cavity-dependent error

2 November 2015

LCWS 2015, Whistler

Cez

Irfu

European O. Napoly On the Comparing of VT and Module Gradients

About Gradient Comparison

i XFEL X-Ray Free-Electron Laser

37

- Accelerating gradients are the most scrutinized module performance parameters, although heat loads, alignment and PED certification are entering the acceptance criteria.
- The absolute gradient is the result of the whole production chain, from the Nb sheet to the RF module test (MT). It is mostly determined by **cavity manufacturing** and **module assembly**.
- The quality of module assembly shows in the gradient difference between cavity acceptance (VT) and module acceptance (MT).
- The VT vs. MT comparison of both the 'maximum' and the 'operational' gradients is impaired by a systematic error:
- Maximum gradients depend on 1) RF duty cycle, 2) cooling conditions and, 3) magnetic environment, which are completely different from VT to MT → mostly cavity-independent error
- Oprational gradients depends, in addition, on X-Ray measurement devices which are completely different from VT to MT (although crosscalibrated) → mostly cavity-independent error
- Finally, Q₀ is not measured in MT: therefore the MT usable gradient could correspond to lower or higher Q₀ values → cavity-dependent error

2 November 2015

LCWS 2015, Whistler

Cez

Irfu

XFEL XFEL module results: Usable Gradient

XFEL Usable Gradient: Definition

XFEL Usable Gradient: Definition

XFEL Usable Gradient: Definition

10

XFEL Module v VT (individual cavities)

VT estimated error ±1.3 MV/m Module estimated error ±2.5 MV/m

 $\Delta G \sim \pm 2.8 \text{ MV/m} \Rightarrow \text{define degradation as } >5.6 \text{ MV/m}$

XFEL Module v VT (individual cavities)

12

VT estimated error ±1.3 MV/m Module estimated error ±2.5 MV/m

 $\Delta G \sim \pm 2.8 \text{ MV/m} \Rightarrow \text{define degradation as } >5.6 \text{ MV/m}$

XFEL VT v Module: Average Usable Gradient

Standard definition of VT usable gradient VT gradient clipped to 31 MV/m

Module

XFEL VT v Module: Average Usable Gradient

definition of VT usable gradient $\underline{ignoring} \ Q_0$ VT gradient clipped to 31 MV/m

Module

XFEL VT v Module: Degraded cavities

standard definition of VT usable gradient (VT clipped to 31 MV/m)

XFEL Summary stats

	All Modules Maximum gradient			Last 14 Modules		
				Maximum gradient		
	VT	MT	relative	VT	MT	relative
	33.8 ±4.0	28.5 ±4.2	-15% ±13%	34.4 ±4.2	29.9 ±2.8	-12% ±10%
VT clipped	30.5 ±1.6	28.5 ±4.2	-6% ±13%	30.5 ±1.6	29.2 ±2.8	-2% ±6%
	Usable gradient			Usable gradient		
	VT	MT	relative	VT	MT	relative
	30.5 ±4.3	27.4 ±4.8	-8% ±19%	30.9 ±5.1	29.3 ±3.7	-3% ±18%
VT clipped	28.9 ±2.6	27.4 ±4.8	-5% ±18%	28.9 ±2.7	29.3 ±3.7	+2% ±15%
	Usable gradient no Q0			Usable gradient no Q0		
	VT	MT	relative	VT	MT	relative
	32.8 ±4.3	27.4 ±4.8	-15% ±17%	33.4 ±4.8	29.3 ±3.7	-11% ±15%
VT clipped	30.0 ±2.2	27.4 ±4.8	-8% ±16%	30.0 ±2.4	29.3 ±3.7	-2% ±13%

XFEL A quick look at Q0

You thought it was hard to compare gradients...

XFEL Quick look at Q₀: Examples

18

XFEL Quick look at Q0: Examples

19

XFEL Quick look at Q0: Examples

20

XFEL Summary

21

- XFEL almost there (less than 30 modules to go)
- (Nearly) all modules exceed XFEL requirements
 - G ~27 MV/m (spec. 23.6 MV/m), > Q ≥10¹⁰
- Several modules ~30 MV/m
- VT to CM performance (degradation)
 - Difficult to make exact comparison
 - For XFEL production, we can say average degradation is now is essentially zero (+2%)
 - Spread (±15%) is still an issue for WG distribution and operations
 - Scientifically pedantic degradation: $-11\% \le \Delta \le -2\%$ (±15%)
- Module Q₀ measurements accuracy poor
 - but still OK for XFEL operations
 - comparisons with predictions from VT difficult