

Domintating noise sources in PVLAS

Guido Zavattini

Università di Ferrara and INFN-Ferrara

PVLAS scheme

- A Fabry-Perot cavity increases the single pass ellipticity by a factor $N=2\mathcal{F}/\pi$
- Heterodyne detection linearizes the ellipticity ψ to be measured
- Rotating magnetic fields modulate the searched effect

Frequency components

Frequency	Fourier component	Intensity/ $I_{\rm out}$	Phase
dc	$I_{ m dc}$	$\sigma^2 + \alpha_{\rm dc}^2 + \eta_0^2/2$	97
$ u_{\mathrm{Mod}}$	$I_{ u_{\mathrm{Mod}}}$	$2\alpha_{\rm dc}\eta_0$	$ heta_{ ext{Mod}}$
$\nu_{\mathrm{Mod}} \pm 2\nu_{\mathrm{Mag}}$	$I_{ u_{ m Mod}\pm 2 u_{ m Mag}}$	$\eta_0 \frac{2\mathcal{F}}{\pi} \psi$	$\theta_{\mathrm{Mod}} \pm 2\theta_{\mathrm{Mag}}$
$2\nu_{\mathrm{Mod}}$	$I_{2 u_{ m Mod}}$	$\eta_0^2/2$	$2\theta_{\mathrm{Mod}}$

The signal amplitude can then be calculated from the two sidebands:

$$\Psi = \frac{1}{2} \left(\frac{I_{\nu_{\text{Mod}} + 2\nu_{\text{Mag}}}}{\sqrt{2I_{\text{out}}I_{2\nu_{\text{Mod}}}}} + \frac{I_{\nu_{\text{Mod}} - 2\nu_{\text{Mag}}}}{\sqrt{2I_{\text{out}}I_{2\nu_{\text{Mod}}}}} \right)$$

All sources of noises contributing to the spectral density of the photodiode signal at $v_{\text{Mod}} \pm 2v_{\text{Mag}}$ will limit our sensitivity

Sensitivity Goal

Main interest of PVLAS is the Euler-Heisenberg birefringence

•
$$B = 2.5 \text{ T}$$

•
$$F = 7.10^5$$
 $\Delta n = 2.5.10^{-23}$ $\psi = 5.10^{-11}$

• L = 1.6 m

If we assume a maximum integration time of 10⁶ s (= 12 days)

The necessary ellipticity sensitivity is $< 5 \cdot 10^{-8} \text{ 1/VHz}$ Birefringence sensitivity $< 2.5 \cdot 10^{-20} \text{ 1/VHz}$

Peak shot noise limit =
$$\sqrt{\frac{e}{I_0q}} \approx 5 \cdot 10^{-9} \; \frac{1}{\sqrt{\rm Hz}} \;\;$$
 for I $_{\rm 0}$ = 8 mW

 $(I_0$ = output intensity reaching the analyzer, q = 0.7 A/W)

Actual Sensitivity

Main interest of PVLAS is the Euler-Heisenberg birefringence

•
$$B = 2.5 \text{ T}$$

•
$$F = 7.10^5$$
 $\Delta n = 2.5.10^{-23}$ $\psi = 5.10^{-11}$

• L = 1.6 m

If we assume a maximum integration time of 106 s (= 12 days)

The present ellipticity sensitivity is $\approx 5 \cdot 10^{-7} \text{ 1/VHz}$ Birefringence sensitivity $< 2.5 \cdot 10^{-19} \text{ 1/VHz}$

Peak shot noise limit =
$$\sqrt{\frac{e}{I_0q}} \approx 5 \cdot 10^{-9} \; \frac{1}{\sqrt{\rm Hz}} \;\;$$
 for I $_{\rm 0}$ = 8 mW

(I_0 = output intensity reaching the analyzer, q = 0.7 A/W)

Present limit

Error bars correspond to 1 σ

$$\Delta n_u = \frac{\Delta n}{B^2} = (-2.4 \pm 4.8) \times 10^{-23} \text{ T}^{-2}$$

Shot noise

• The ultimate limit will be the rms shot noise $i_{\rm shot}$ of the current $i_{\rm DC}$ (q = photodiode efficiency \approx 0.7 A/W, Δv = bandwidth).

$$i_{\rm shot} = \sqrt{2ei_{\rm DC}\Delta\nu} = \sqrt{2eI_0q\left(\sigma^2 + \frac{\eta_0^2}{2} + \alpha_{\rm DC}^2\right)\Delta\nu}$$

• With $\eta_0 \gg \sigma^2$, $\alpha_{\rm DC}$ the shot noise spectral sensitivity becomes (I_0 = 8 mW)

$$s_{\rm shot} = \sqrt{\frac{e}{I_0 q}} \approx 5 \cdot 10^{-9} \frac{1}{\sqrt{\rm Hz}}$$

If we were shot noise limited...

• The expected ellipticity for B = 2.5 T, $F = 7.10^5 \text{ and}$ L = 1.6 m is

$$\psi_{\rm QED} = 5 \cdot 10^{-11}$$

 The necessary integration time to reach a signal to noise ratio = 1

$$T = \left(\frac{s_{\text{shot}}}{\psi_{\text{QED}}}\right)^2 = 10^4 \text{ s}$$

Other known noise sources

$$s_{\rm dark} = \frac{V_{\rm dark}}{G} \frac{1}{I_{\rm out} q \eta_0}$$

Photodetector noise. Reduce contribution by increasing power or improving detector

$$s_{\rm J} = \sqrt{\frac{4k_{\rm B}T}{G}} \frac{1}{I_{\rm out}q\eta_0}$$

Johnson noise. Reduce contribution by increasing power

$$s_{\text{RIN}} = \text{RIN}(\nu_{\text{Mod}}) \frac{\sqrt{(\sigma^2 + \eta_0^2/2)^2 + (\eta_0/2)^2}}{\eta_0}$$

Laer intensity noise. Reduce contribution by reducing σ^2 , stabilize power, increase v_{Mod}

+ all other uncontrolled sources of time varying birefringences $\alpha(t)$

High finesse cavities are a source of 1/f birefringence noise

Calculated noise

• Contribution of the various noises as a function of the modulation amplitude η_0 compared to the measured sensitivity.

F ≈ 700000

Classification

- Noise in phase with the rotation of the magnets
 - Generate peaks
 - Peaks can be at various harmonics
 - Faraday effect at first harmonic
 - Integration is useless until these are eliminated

- Wideband Noise
 - Totally independent from magnets
 - Reduces by integrating in time

IN PHASE NOISE

Two magnets

Two magnets system to check that signal is due to magnetic birefringence

Measurement with 1.3 mbar of air

For a very weak signal this represents a crucial test

Vibrations

- If rotating magnets shake the optical bench peaks would appear
 - Vibrated bench to determine effect in ellipticity.
 - In phase vibration of the bench with magnets in rotation generate a very small acceleration signal. Not a limiting factor.

Diffused light in tube

Baffles were mounted in properly spaced positions so that the light scattered from the mirror cannot see the internal surface of the glass tube.

- Not optimal due to rounded edges of the o'rings
- Plan to replace them with baffles with knife-edges
- Black cermamic tube?

Diffused light in tube

- Glass tube without baffles: spurious peaks were present at ω_{mag} and $2\omega_{mag}$
- The peaks depended on the position of the tube in the magnet
- Glass tube with baffles: spurious peaks are no longer present at ω_{mag} and $2\omega_{mag}$

Unfortunately, no improvement in sensitivity

Faraday

- Faraday effect generates rotations, not ellipticities
 - Variations of the field component parallel to propagation
 - Present in both the gas (calibration) and on the mirrors
 - Linear in the field intensity -> first harmonic (odd harmonics)
 - In principle, not a problem. But ...

Cavity birefringence mixes ellipticities and rotations

Mirror birefringence

Fabry Perot cavity mirrors have intrinsic static birefringence

The resulting cavity behaves like a waveplate. This results in:

- cavity mode splitting
- increased 1/f noise (?)

- Cavity mirrors must be rotated to reduce total birefringence
- Polarization must be aligned with one of the equivalent waveplate axes.

Cavity birefringence

- With He gas at various pressures we measured the ellipticity as a function of feedback offset δ
- The imaginary part of E(t) will beat with the ellipticity of the modulator

$$E(t) = E_0 \left(\frac{2\mathcal{F}}{\pi}\right) i\psi \sin 2\theta \left(1 + i\left(\frac{\alpha_{\rm EQ}}{2} - \delta\right) \frac{2\mathcal{F}}{\pi}\right) \left(\frac{1}{1 + \left(\frac{2\mathcal{F}}{\pi}\right)^2 \sin^2\left(\frac{\alpha_{\rm EQ}}{2} - \delta\right)}\right)$$

Example with P = 0.98 mbar He

Mirror birefringence

The laser is locked with its polarization along one of the cavity's axis.

- the perpendicular polarization acquires an extra phase due to the cavity birefringence
 - there is also a rotation (real component) [Appl. Phys. B 83, 571-577 (2006)]

$$E(t) = E_0 \left(\frac{2\mathcal{F}}{\pi}\right) i\psi \sin 2\theta \left(1 - i\left(\frac{\alpha_{\rm EQ}}{2} - \delta\right) \frac{2\mathcal{F}}{\pi}\right) \left(\frac{1}{1 + \left(\frac{2\mathcal{F}}{\pi}\right)^2 \sin^2\left(\frac{\alpha_{\rm EQ}}{2} - \delta\right)}\right)$$

With a QWP and the ellipticity modulator one can measure the induced rotation.

Mirror birefringence

Vice versa if there were a rotation ε induced in the cavity it will partially convert to an ellipticity and beat with the modulator alone

$$E(t) = E_0 \left(\frac{2\mathcal{F}}{\pi}\right) \underbrace{\epsilon \sin 2\theta \left(1 - i\left(\frac{\alpha_{\rm EQ}}{2} - \delta\right) \frac{2\mathcal{F}}{\pi}\right)}_{\bullet} \left(\frac{1}{1 + \left(\frac{2\mathcal{F}}{\pi}\right)^2 \sin^2\left(\frac{\alpha_{\rm EQ}}{2} - \delta\right)}\right)$$

Rotation/ellipticity

QWP inserted: Rotation

230 µbar Ar. $v_B = 6$ Hz, 640 s integration

In Vacuum

- a Faraday rotation will be seen as an ellipticity. In vacuum, we only see a contribution at the first harmonic: signal $\approx 10^{-8}$.
- The two magnets give different values and phase in the signal due to slightly different longitudinal component of the field on the mirrors

In phase noise

- After some effort, we think we have systematic peaks under control.
 Centering of the glass tube inside the magnet is critical.
- Long integration is possible.
- During some long runs, small drifts change the measurement conditions and small structures appeared around $2v_B$ several bins wide in the Fourier spectrum.

 $P < 10^{-7}$ mbar. $v_B = 4$ Hz T = 10^6 s intgration Signal width $\Delta v = 10^{-6}$ Hz Structure $> \approx 10^{-5}$ Hz

WIDEBAND NOISE

Possible sources

- Thermal effects
- Laser feedback
- Environmental noise
- Diffused light
- Gas
- Mirror birefringence

Measured noise

 $T = 10^6 \, s$

Integrated noise around $2v_{\rm B}$ decreases as \sqrt{T}

Performance without cavity

No cavity – reached expected noise level with rotating magnets

No electronically induced signals in the readout system

Thermal effects

- Noise at $2v_B$ is independent of laser power
 - Stronger drifts in quasi static ellipticity if power is turned up
 - Effect at much lower frequencies than $2v_R$ (6 Hz 12.5 Hz)
 - After an 'unlock' of the laser there is an ellipticity settling time of several minutes. Does not affect noise a $2v_B$.
 - The settling and drifts also depend on how well the polarization is aligned with the cavity birefringence.
 - The contribution of the static ellipticity of the PEM is not neglectable.

Environmental noise

- Possible contribution from conditioning system
 - All electronics has been taken outside of the clean room
 - Temperature stability is better than 0.1 degrees
 - Took two relatively long runs with and without conditioning system => NO DIFFERENCE in sensitivity

Feedback

- Redesigned feedback circuit after 2014
 - Automatic locking
 - Lower noise integrated OpAmps
 - Lower offsets

No improvement in the wideband noise

- Tried several different locking frequencies
 - Working frequency = 503 kHz: below crystal resonance
 - Tried different frequencies without any improvement in the noise

Feedback 2

- Locking set point can be modulated
 - Modulation generates ellipticity signal at v_{Mod} and $2v_{\text{Mod}}$.
 - Conversion Ellipticity => frequency: ≈ 10⁻⁶ per Hz
 - Output noise from mixer generates noise in ellipticity: ≈ 10⁻⁹

Cannot account for observed wideband noise.

Diffused light

- Installation of baffles and absorbing glass
 - Baffles reduced peaks but had no effect on sensitivity
 - Diaphragm at center of cavity: 5 mm diameter. No effect.
 - Absorbing glass in large vacuum chambers. No effect.

- Changed input polarizer
 - New polarizer with fewer surfaces (Glan-Thompson)
 - Noise improved by factor ≈ 4!
 - May be due to alignment ?

Not really clear..... More testing soon

Mirror Birefringence

- Both mirrors have birefringence with $N\alpha/2 \approx 0.5$
 - Aligned slow axis of one mirror with fast axis of the other

- Unfortunately the alignment drifts slowly with time!
- To be conservative, we considered the worst value.

$$N\alpha_{\rm EQ} = N\sqrt{(\alpha_1 - \alpha_2)^2 + 4\alpha_1\alpha_2\cos^2\theta_{\rm WP}}$$

Cooling mirrors

 We are planning to design new chambers for the mirrors which will allow cooling of the mirrors to LN₂.

Thank you

Cotton-Mouton effect

A gas at a pressure p in the presence of a transverse magnetic field B becomes birefringent.

 Δn_u indicates the birefringence for unit field at atmospheric pressure

$$\Delta n = n_{\parallel} - n_{\perp} = \Delta n_u \left(\frac{B[T]}{1T} \right)^2 \left(\frac{P}{P_{\text{atm}}} \right)$$

Total ellipticity

$$\psi_{\rm gas} = \frac{\pi L_{\rm eff}}{\lambda} \Delta n_u B^2 p \sin 2\theta$$

Gas	$\Delta n_{\rm u}$ (T ~ 293 K)	
Nitrogen	$-(2.47\pm0.04) \times 10^{-13}$	
Oxygen	$-(2.52\pm0.04) \times 10^{-12}$	
Carbon Oxide	$-(1.83\pm0.05) \times 10^{-13}$	
Helium	(2.2±0.1) x 10 ⁻¹⁶	

To avoid spurious effects the residual gas must be analysed:

Ex. $p(O_2) < 10^{-8}$ mbar

Key ingredients

Experimental study of the quantum vacuum with:

- magnetic field perturbation
- linearly polarised light beam as a probe
- changes in the polarisation state are the expected signals

$$\psi = \frac{\pi L_{\text{eff}}}{\lambda} \Delta n(B^2) \sin 2\theta(t)$$

- high magnetic field rotating high field permanent magnet
- ullet long optical path very-high finesse Fabry-Perot resonator: $N=2{\cal F}/\pi$
- ellipsometer with heterodyne detection for best sensitivity periodic change of field amplitude/direction for signal modulation

Problems and how to proceed with the process of the proces

Sensitivity far from expected

- Diffused light in the chambers due to optical elements and from a few dust speckles on the mirrors
- Substituted input polarizer (fewer surfaces) and noise improved by factor 3 Clue?

- Ordered wobble-sticks to try to design a cleaning method
- Ordered absorbing glass to cover inner walls of chambers

Future

- Starting new data taking with new sensitivity
- QED is still out of reach

Laser locking principle

- In practice the laser is modulated at a frequency greater than the feedback bandwidth
- The reflected light is detected and demodulated at the modulation frequency
- An error signal is obtained. The central part is linear

Locking scheme

Locking scheme

Noise spectral density of the error signal during lock. This indicates the frequency **difference** between the cavity and the laser.

Cavity finesse = 45000 Cavity width = 3800 Hz

Noise considerations

Indicating with $R_{\nu_{
m Mod}+2\nu_{
m Mag}}$ the noise spectral density at the signal frequencies and assuming

$$R_{\nu_{\text{Mod}}+2\nu_{\text{Mag}}} = R_{\nu_{\text{Mod}}-2\nu_{\text{Mag}}}$$

The ellipticity sensitivity spectral density will be

$$s = \frac{R_{\nu_{\text{Mod}} + 2\nu_{\text{Mag}}}}{\sqrt{4I_{\text{out}}I_{2\nu_{\text{Mod}}}}}$$

Ferrara test setup

- Ellipsometer
 and optical
 cavity on single
 optical table
- Optical table with active suspension system
- Two magnets
- High rotation frequency for the magnetic source
- High frequency polarization modulator

In operation since 2010

Main limitation: most of the components are magnetic

Performance - wideband noise

With high-finesse cavity: F > 400000Extra wideband noise. Sensitivity worsened – still under study

 s_{total} (6 Hz) ~ 3 10^{-7} 1/VHz s_{total} (20 Hz) ~ 1.5 10^{-7} 1/VHz

Tube movement

- Placing a 3-axis accelerometer on the glass tube we were able to study its movement as a function of its position
- The glass tube was positioned where the movement was minimum.

