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Light-by-light scattering

 

 

Figure 1 � Light-by-light scattering to lowest order in QED.

all 4 photons real: Vacuum birefringence, not yet observed

all 4 photons virtual:
subdiagram in g � 2, ultra-well-tested to 0.24 ppb [1], LBL � 10

�5

subdiagram in Lamb shift, well-tested, led to �Proton radius puzzle� [2]

Delbrück scattering [3]: 2 real photons plus nucleus Coulomb �eld,
di�cult to isolate in experiments
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Estimated ellipticity for all-laser VB
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Basic geometry

XZ

YLaser beam envelope

Exiting XFEL pulse
elliptically polarized

EXFEL

Elaser

Blaser

Counterpropagating PW-class laser pulse
linearly polarized but 45° to XFEL

Entering XFEL pulse
linearly polarized
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Disclaimer

Strict forward scattering k � k
0 and only polarization-�ip " � "0 = 0

(as discussed by Heinzl et. al. , Opt.Comm., 2006 [4]). Recent work
by F. Karbstein et. al. [5, http://arxiv.org/abs/1507.01084v1,
accepted in Phys. Rev. D; see also two talks later] includes small
scattering angles.
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Single photon phase shift
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X; Y : transverse coordinate

T : time lag

IL = IL(x; y ; z; t) : laser �eld
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Single photon ellipticity and bunch e�ect

	(X; Y; T ) � j�j2 = j{=2��(X; Y; T )j2
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Nip = NX

∫
	(x; y ; t)fX; trans(x; y ; �)fX; temp(t; �) dx dy dt (6)

� NX�
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Parameter overview for �ipped photon count

Table 1 � Overview of beam parameters entering the calculation of the number of �ipped photons per
shot, cf. Eq. (6).

, for Gaussian beams and pulses.

Quantity Optical laser beam XFEL probe beam
IL(x; y ; z; t) fX;trans , fX;temp

pulse energy WL = NL ~!L WX = NX ~!X

wavelength �L = 2�c0=!L �X = 2�c0=!X

spot size wL � �L
� 2F# wX

pulse duration �L �X

impact factor �

time lag �
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Visual example 1: Spatial overlap
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Figure 2 � Plot of transverse and longitudinal laser intensity dependence in log scale and in the range
10�3 � AB � 1, as a function of z and R in units of zR and wL, respectively. The inset shows the Lorentz
distribution (only longitudinal dependence) as a function of z in units of zR in linear scale.
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Visual example 2: Temporal overlap
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Figure 3 � Plots of temporal overlap regions for 2 parameter scans as function of z in microns. Top row:
�L = 30 fs constant and T varies. Bottom row: T = 0 fs constant and �L varies. Please note that
10 µm � zR for comparison with the previous plot.
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Basic setup scheme

Vacuum
Focus

Lens 1 Lens 2 Lens 3 DetectorAnalyzerPolarizerIMSource

Figure 4 � Sketch of the X-ray beam path. X-rays are emitted from the source as a beam with some
initial transverse width and divergence. A �rst CRL lens (Lens 1) is used to collimate the beam and
maintain a reasonable beam width and �ux. Once collimated, the beam passes through an intensity
monitor (IM), recording shot-to-shot intensity �uctuations before the �rst channel-cut crystal (Polarizer)
generates a linear polarization of high purity. The next stage consists of a symmetric set of CRLs (Lens 2
and 3) with relatively short focal lengths. They focus and re-collimate the beam, which �nally passes the
analyzer channel-cut crystal before it reaches the detector.
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Detector signal

Ndet = Nx
det + Ny

det = NX � TX � (�pol + �)

= NX � TX � �pol �
(
1 +

�

�pol

)
;

(7)

We identify a background signal

Nbg
det � NX � TX � �pol = �NIM ; (8)

encoding the excellent but �nite polarizer extinction �pol, and

NQED
det = NX � TX � � : (9)

A key parameter governing the chances for detecting the QED e�ect is given
by the ratio

� � �

�pol
: (10)
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Shot-to-shot-normalization and accumulation

We have to normalize somehow to NX due to large (100%) �uctuations with
help of NIM:

R � Ndet

�NIM

= 1 +
NQED
det

Nbg
det

= 1 +
�

�pol
= 1 + � (11)

We also have to accumulate m shots to reduce the counting statistics error
below the net signal count:

m � k2
�pol

NXTX�2
/ ���4 (12)

Interestingly, �� / WL, thus m / W�4
L and Tacq = m=frep;L / W p�4

L for
frep;L / W�p

L .
Also, further normalization of R with laser pulse energy is possible.
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Observables summary

Table 2 � Summary of observables and relevant parameters governing the experiment.

Type Variable Explanation

1 Ndet primary observable
2 NIM reduces �uctuations due to Ndet / NX

3 WL reduces �uctuations due to � / W 2
L

4 � and � pulse impact parameters caused by
spatial and temporal jitter

5 �L, �X, wL, wX basic beam parameters
(2nd order moments)

6 IL, fX;trans, fX;temp full beam intensity distributions
(higher order moments)

7 TX, �pol, � instrumentation parameters

Essentially: Measure R in parameter space (�; �; : : :).
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X-ray polarizer parameters

Table 3 � Properties of a Si800 6-bounce channel-cut crystal [6, 7], to be employed as X-ray polarizers.

Property Value

incidence angle � = 45:000

required photon energy EX = 12:914 keV

extinction �pol � 6 � 10�10
transmission Tpol � 0:3

angular acceptance �� . 10 µrad

spectral acceptance �EX

EX
� 10�4
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X-ray source parameters

Table 4 � Overview of XFEL source parameters (from [8] and [9, Sec. 4.1.1]), assuming a Gaussian
beam pro�le and a Gaussian pulse shape. The waist corresponds to a FWHM beam diameter of 50 µm.

Parameter Value

photon energy EX = 12:914 keV

wavelength �X = 0:960Å
photon number NX = 5 � 1012
pulse duration �X = 20 fs

source waist w0 = 42:5 µm

source divergence �0 = 1 µrad

M-squared M2 = 1:4

pulse energy WX = 10mJ

pulse peak power P̂pulse = 0:5TW
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Laser parameters

Table 5 � Overview of optical laser parameters. We assume a very short focusing device of F# = f =2:5.

Parameter Value

wavelength � = 800 nm

pulse energy WL = 30 J

pulse duration �L = 30 fs

focus waist wL = 1:75 µm

Rayleigh length zR = 12 µm

peak power P̂L = 1PW

peak intensity I0 � 2 � 1022W=cm2

� 4:4 � 10�8IS
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Results for ideal case: stable perfect overlap

� � 4 � 10�12
� � 0:00666 : : :

NQED
det � 0:73 photons per shot

Nbg
det � 110 photons per shot

m(5�) � 5 � 103 shots
Tacq(5�; 1Hz) � 1:5 hours
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Realistic jitter

Table 6 � Overview of jitter distribution parameters and sampling resolution of measurement devices.

parameter � parameter �

sampling resolution �BAM = 20 fs �FFM = 0:2 µm

jitter rms �� = 50 fs �� = 1:75 µm = wL

initial jitter mean 1 �� = �17 fs �� = �0:4 µm
optimal jitter mean 2 �� = 35 fs �� = 0:6 µm

1not zero due to drifts
2not zero due to limited accuracy of alignment
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Results of realistic case
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Figure 5 � Distribution of the number of detected photons, Ndet, as a function of impact parameters �
and � . A total of 21,600 shots (6 hours) has been sorted into bins of size 20 fs� 0:2 µm. The distribution
displayed is basically determined by the jitter distribution parameters of Table 6. Integration can yield the
photon excess as NQED

det
= Ndet � �NIM. Left: initial jitter conditions, N

QED
det

= 2611� 1775 photons;

Right: optimized and re-adjusted mean values, NQED
det

= 3803� 1776 photons.
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Relative signal distribution
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Figure 6 � Distribution of the ratio R as a function of impact parameters � and � . (Shot number and bin
size as in �gure 5.) The distribution is independent of the jitter conditions. Its peak position is basically
determined by the actual alignment, its shape by the individual pulse parameters (variables of types 5 and
6 in Tab. 2).
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Synthetic example measurement results
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Figure 7 � Distribution of the ratio R as a function of impact parameters � and � (bin size and color scale
as before, cf. Fig. 6). The �rst slide represents a single run of 21,600 shots (6 hours), the second slide
100� more, i.e. 2:16� 106 shots, improving the counting statistics by a factor of 10. Left: initial jitter
conditions; Right: optimized and re-adjusted mean values.
The color range is the same as in Fig. 6 with all outliers beyond that range suppressed to avoid confusion.
The peak position is again basically determined by the parameters of the jitter distribution, which may
lead to a poor resolution of the peak position of R.
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Summary (I)

Re�ned previous model in simple manner to account for focused and
pulsed beams

Strict forward scattering and solely polarization �ip

Neglecting variations of refractive index for propagation

Recent work by Karbstein et. al. [5] fully(?) accounts for that

Considered experimental setup and realization, observables, precautions,
countermeasures, course of action

Crossed polarizers (polarimeter) plus 1:1-telescope

Rear end detector plus intensity monitor, further online monitors

Conducted feasibility study based on current state-of-the-art facts and
reasonably trustworthy predictions

European XFEL plus HIBEF

Channel-cut crystals plus compound refractive lenses
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Summary (II)

Results
Ideally few-hour measurement (30 J, 1Hz), but depends on laser pulse

energy (10 J, 5Hz: 16 hours)

Jitter and drifts should be low

Alignment procedure should be accurate

Outlook
Investigate Karbstein's work to measured only de�ected photons

Study polarimetry with CRL telescope and XFEL beam
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to be continued
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Overall setup
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Gaussian beams (I)

IL(x; y ; z; t) = I0 � Atrans(x; y ; z)� Along(z)� Atemp(z; t) (13)

Atrans(x; y ; z) = exp

[
�2x

2 + y2

w(z)2

]
(14)

Along(z) =

[
1 +

(
�Lz

�w2
L

)2
]�1

(15)

Atemp(z; t) = exp

[
� ln 2

(
t + z=c0

0:5�L

)2
]

(16)
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Gaussian beams (II)

zR = �w2
L=�L (17)

w(z) = wL

√
1 +

(
�Lz

�w2
L

)2

(18)

I0 =
4
p
ln 2

�3=2

WL

w2
L�L

' 0:60
WL

w2
L�L

(19)

wL �
�L

�
2F# (20)

zR �
�L

�
(2F#)

2 (21)
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