

Geant4 simulation of LumiCal 2014 TB

Alina Neagu, Titi Preda

Institute of Space Science, Bucharest, ROMANIA

presented at 27nd FCAL Collaboration Workshop | 2015| DESY, Zeuthen

Overview

- Implementation of TB LumiCal geometry in Geant4
- Fluctuation of the muon energy deposition in silicon sensor
- Simulation of the shower energy deposition
- Conclusions

LumiCal TB geometry and materials in Geant4

Geant4 geometry for the third configuration

- geometrical dimensions and materials were taken from Francois Nuiry's presentation
- Si sensors of 320 μm in width
- version I 100% tungsten and width 3.5mm
- version II 93% tungsten and width 3.5mm
- version III 93 and 95% tungsten and width different thickness plates

Density	Chimical composition		
	W	Ni	Cu
18	95%	4.2 %	0.8 %
17.7	93%	5.25 %	1.75 %

Plate	average thickness	largest distance
Diamand	(9 measurement points)	Detween noies and nins
Plansee1	3.505 mm	0.130 mm *
Plansee2	3.470 mm	0.078 mm
Plansee3	3.520 mm	0.057 mm
Plansee4	3.475 mm	0.059 mm
Plansee5	3.490 mm	0.031 mm
	* due to a local problem in one corner	
MG1	3.584 mm	0.250 mm
MG2	3.521 mm	0.160 mm
MG3	3.542 mm	0.240 mm
MG4	3.566 mm	0.426 mm
MG5	3.645 mm	0.431 mm
MG6	3.470 mm	0.125 mm 3

Muon energy deposition in Si sensor

Geant4 Simulation conditions

- Si with 320μ m thickness
- $E_{\mu} = 5 \text{GeV}$
- PAI Physics List

EM shower energy deposition

Geant4 simulation conditions

- a) e- beam of 5GeV
- b) sensor geometry in the right upper picture
- c) beam profile was a disk with
 - r = 5.4mm
 - centre of disk is about the same as in experiment
 - uniform distribution of e- inside the disk
- d) PAI for the e+, e-, gamma interaction with silicon sensors and standard EM model for the interaction with tungsten plates
- e) real thickness of the plates (see slide nr. 3)

Comparison between two different versions implemented in GEANT4

Longitudinal shower development

Experimental data from Jakub Moron presentation

- Geant4 simulation was done for 2014 LumiCal TB takeing into account the spread of the beam, about the same sensor dimentions equipped with electronics
- PAI model was used for silicon sensors and standard electromagnetic model for tungsten absorber