

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Development of new dedicated readout electronics for LumiCal detector

Marek Idzik on behalf of AGH-UST

Faculty of Physics and Applied Computer Science AGH University of Science and Technology Cracow Poland

27Th FCAL Collaboration Workshop 20-21 October 2015 DESY Zeuthen

- Motivation
- Development of readout ASIC in CMOS 130 nm
- Status and Plans

Motivation What kind of readout ASIC do we need?

We are developing ultralow power readout ASIC with good amplitude and time measurement for LumiCal detector

We have chosen a multi-channel readout ASIC with:

- Advanced funtionality: front-end and ADC in each channel, followed by serialization and fast data transmission
- Main features: fast and frequency scalable ($f_{sample} \sim DC-40$ MS/s), ultra-low power, power pulsing, asynchronous ADC sampling (no clock needed)
- Main components: front-end, ADC, PLL, fast I/O, slow control, test modes, DACs, etc... complex System-on-Chip (SoC) readout ASIC

Multichannel readout ASIC What has been already done?

Over the past years we have made a big progress in data conversion (ADC) and serialization parts:

- Fast ultra-low power ADC has been developed
- Multichannel ADC was designed and fabricated
- Fast PLL-based serialization is under development with very promising results

Multichannel readout ASIC Fast ultra-low power 10-bit SAR ADC

Design consideration:

- Power scalable with sampling frequency (up to >40 MS/s)
- Power cons. <1mW@40MS/s
- Power pulsing (no clk=no power)
- 146 µm pitch, ready for multichannel integration

Architecture of 10-bit SAR ADC

- Differential segmented/split DAC with MCS switching scheme *ultra low power*
- Dynamic comparator no static power consumption, power pulsing (no clk=no power)
- Asynchronous logic no clock tree, power saving, fast

Multichannel readout ASIC Measurements of single 10-bit SAR ADC

Static performance example at 10MS/s

Dynamic performance scan over f_{sample} for f_{in} at 0.1 Nyquist

Very good ADC performance: INL,DNL > 0.5LSB and ENOB ~ 9.3

Multichannel readout ASIC Measurements of single 10-bit SAR ADC

Power consumption

$$FOM = \frac{Power}{f_{sample} * 2^{ENOB}} [J/conv.]$$

Ultra-low power consumption and excellent Figure-of-Merit

ADC performance among the best State-of-Art designs

Multichannel readout ASIC Architecture of 8-channel 10-bit digitizer

Specifications & main features:

- Technology CMOS 130 nm
- 8 channels of 10-bit SAR ADC
- Multimode multiplexer/serializer:
 - Single ADC mode: single channnel output
 - Parallel mode: one output per channel (10bit serialization with faster clock)
 - Serial mode: one output per all channels (double serialization: 10-bit x 8 channels)
- Additional test modes, with counters/pseudorandom data instead of ADC output, to verify serialization/transmission
- PLL for data serialization
- High speed SLVS interface (>1GHz)
- Power pulsing

Multichannel readout ASIC 8 channel 10-bit digitizer - layout&prototype

2200um x 2000um

Multichannel readout ASIC First measurements of 8-channel 10-bit digitizer

All 8 channels work well!

It is probably the first working very low power multichannel 10-bit ADC for particle physics detectors

Status Where we are now?

In November 2015 we would like to submit the ASIC:

- 8-channels
- front-end and ADC in each channel,
- Serialization not yet complete
- Some DACs for automatic setting still missing

Plans - short term

In 2016 we would like to submit a prototype ASIC ready for compact LumiCal:

- 16-channels ???
- front-end and ADC in each channel,
- Serialization completed (1 data output per chip few Gb/s)
- Everything (all DACs) for automatic settings comprised in the chip

Thank you for attention