Possible changes in ILD forward region design due to the reduced L*

Sergej Schuwalow, DESY Hamburg

Contents

- ILD forward region (present design)
- Detectors in the very forward region
- BeamCal option based on sapphire sensors
- GamCal possible developments
- L* reduction 4.4 m -> 4 m option
- LHCal new design (first steps)
- Pair background
- Conclusions and outlook

Forward region design - side view

Forward region design

FIGURE 2.4.1.1 Forward region components

Forward region design

FIGURE 4.2.2.1 Maintenance scenario for Vertex detector

- LumiCal precision integrated luminosity measurement (Bhabhas), and hermeticity
- $dL/L < 10^{-3}$ for $\sqrt{s} = 0.5-1$ TeV
- dL/L <2×10⁻⁴ for GigaZ very challenging!
- LHCal PID behind LumiCal, hermeticity
- BeamCal instantaneous luminosity optimization (beam-strahlung pairs) and hermeticity
- Tracking/spectrometers:
- Pair monitor luminosity optimization
- GamCal instantaneous luminosity optimization (beam-strahlung γ detector at z \approx 190m)

Forward Detectors

20 October 2015

27th FCAL workshop, Zeuthen

		Sapphire	Diamond	GaAs	Si
•	Density, g/cm³	3.98	3.52	5.32	2.33
•	Dielectric constant	9.3 - 11.5	5.7	10.9	11.7
•	Breakdown field, V/cm	~10 ⁶ *	107	4·10 ⁵	3·10 ⁵
•	Resistivity, Ω ·cm	> 10 ¹⁴	>10 ¹¹	107	10 ⁵
•	Band gap, eV	9.9	5.45	1.42	1.12
•	El. mobility, $cm^2/(V \cdot s)$	> 600 **	1800	~8500	1360
•	Hole mobility, $cm^2/(V \cdot s)$	-	1200	-	460
•	MIP eh pairs created, eh/µ	m 22	36	150	73

^{*} Typical operation field $\sim 1-2\cdot 10^4$ V cm⁻¹

^{**} at 20°C, ~30000 at 40°K

Modification of BeamCal design for sapphire sensors application

Dynamic range needed for BeamCal Readout (high energy electrons/MIPs)

GamCal – Yale Group Design,

no new developments since 2007

Integrated Beamstrahlung Spectrometer

ILD Mokka model → DD4HEP, L*=4.4 m

Forward Region - possible changes towards L*=4m

- Need to find ~40cm in current design
- Look into design optimisations of all structures
 - maybe find some 10cm there, but more?
- · Biggest devices:
 - Pump in front of BeamCal (30cm)
 - LHCAL (~50cm)

Forward Region - Things to Do

- Revisit FCAL design and look for possible space savings
 - any cm helps
- Do a coherent study of LHCAL design
 - physics requirements
 - technical design
- Change BeamCal design at new location (holes for incoming/outgoing beams)
- Eventually redo the pair background simulations with new BeamCal location
- All tasks need to be worked on, FCAL could help here out...

Forward region, reduced $L^* = 4m$ (1)

Forward region top view, reduced L*=4m (2)

Forward region, reduced L*=4m (3)

Forward region, LHCal(1/2) and beampipe

LHCal Layout (bottom half)

Sensors:

- ➤ Si (~ECal)
- Sci+SiPM (~AHCal)

Kiev group started with LHCal simulations (see talk at this WS)

Pair Background Backscattering

- Pairs from Beamstrahlung hit forward region, mostly BeamCal
- Backscattering leads to background in the ILD tracking system
 - charged particles in SI
 - photon conversions in TPC
 - neutrons in calorimeter endcaps
- Need to redo the background simulations if forward region design changes

(See talk by Lucia Bortko at this WS)

Conclusions and outlook

- Design of the ILD forward region revisited to match L*=4 m
- 1. BeamCal shifted by 40 cm in the IP direction
- 2. Vacuum pump moved behind QDO
- 3. Graphite absorber placed inside LHCal inner cutout
- MC simulations of LHCal started at Kiev (first results on tungsten option performance)
- Study of BeamCal sapphire version is ongoing
- Pair background simulations are done for new BeamCal location
- GamCal design should be reconsidered (sapphire tracker?)
- Schedule? Resources? Manpower? not clear....

Thank you

Beam Pipe

Possible vacuum problem solution?

To be checked....

BeamCal sensor requirements

BeamCal should be compact, small Moliere radius needed:

-sampling calorimeter with solid state sensors, tungsten as absorber.

Severe load at small radii due to beamstrahlung:

- radiation hard sensors (up to 1 MGy annual dose)

Bunch-by-bunch operation:

- fast response of sensors

Test beam studies, physical calibration:

- sensitivity to MIPs

BeamCal – sapphire based design

